The present work proposes several modifications to optimize both emissions and consumption in a commercial marine diesel engine. A numerical model was carried out to characterize the emissions and consumption of the engine under several performance parameters. Particularly, five internal modifications were analyzed: water addition; exhaust gas recirculation; and modification of the intake valve closing, overlap timing, and cooling water temperature. It was found that the result on the emissions and consumption presents conflicting criteria, and thus, a multiple-criteria decision-making model was carried out to characterize the most appropriate parameters. In order to analyze a high number of possibilities in a reasonable time, an artificial neural network was developed.
CO2 is the main anthropogenic greenhouse gas and its reduction plays a decisive role in reducing global climate change. As a CO2 elimination method, the present work is based on chemical absorption using aqueous ammonia as solvent. A CFD (computational fluid dynamics) model was developed to study CO2 capture in a single droplet. The objective was to identify the main mechanisms responsible for CO2 absorption, such as diffusion, solubility, convection, chemical dissociation, and evaporation. The proposed CFD model takes into consideration the fluid motion inside and outside the droplet. It was found that diffusion prevails over convection, especially for small droplets. Chemical reactions increase the absorption by up to 472.7% in comparison with physical absorption alone, and evaporation reduces the absorption up to 41.9% for the parameters studied in the present work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.