The vertical dynamic actions transmitted by railway vehicles to the ballasted track infrastructure are evaluated taking into account models with different degrees of detail. In particular, this matter has been studied from a two-dimensional finiteelement model to a fully coupled three-dimensional multibody finite-element model. The vehicle and track are coupled via a nonlinear Hertz contact mechanism. The method of Lagrange multipliers is used for the contact constraint enforcement between the wheel and rail. Distributed elevation irregularities are generated based on power spectral density distributions, which are taken into account for the interaction. Due to the contact nonlinearities, the numerical simulations are performed in the time domain, using a direct integration method for the transient problem. The results obtained include contact forces, forces transmitted to the infrastructure (sleeper) by railpads, and envelopes of relevant results for several track irregularities and speed ranges. The main contribution of this work is to identify and discuss coincidences and differences between discrete two-dimensional models and continuum three-dimensional models, as well to assess the validity of evaluating the dynamic loading on the track with simplified two-dimensional models.
This work presents experiments and modelling aimed at characterising the passive mechanical behaviour of the human thoracic descending aorta. To this end, uniaxial tension and pressurisation tests on healthy samples corresponding to newborn, young and adult arteries are performed. Then, the tensile measurements are used to calibrate the material parameters of the Holzapfel constitutive model. This model is found to adequately adjust the material behaviour in a wide deformation range; in particular, it captures the progressive stiffness increase and the anisotropy due to the stretching of the collagen fibres. Finally, the assessment of these material parameters in the modelling of the pressurisation test is addressed. The implication of this study is the possibility to predict the mechanical response of the human thoracic descending aorta under generalised loading states like those that can occur in physiological conditions and/or in medical device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.