International audienceThe work presented here focuses on the analysis of a turbulent boundary layer saturated with saltating particles. Experiments were carried out in a wind tunnel 15m long and 0.6m wide at the University of Aarhus in Denmark with sand grains 242 μm in size for wind speeds ranging from the threshold speed to twice its value. The saltating particles were analysed using particle image velocimetry (PIV) and particletracking velocimetry (PTV), and vertical profiles of particle concentration and velocity were extracted. The particle concentration was found to decrease exponentially with the height above the bed, and the characteristic decay height was independent of the wind speed. In contrast with the logarithmic profile of the wind speed, the grain velocity was found to vary linearly with the height. In addition, the measurements indicated that the grain velocity profile depended only slightly on the wind speed. These results are shown to be closely related to the features of the splash function that characterizes the impact of the saltating particles on a sandbed. A numerical simulation is developed that explicitly incorporates low-velocity moments of the splash function in a calculation of the boundary conditions that apply at the bed. The overall features of the experimental measurements are reproduced by simulation
We observed experimentally a new regime for granular flows in an inclined channel with a flow-rate-controlled system. For high flow rates, the flow occurs atop a static granular heap whose angle is considerably higher than those usually exhibited by granular heaps. The properties of such superstable heaps (SSH) are drastically affected by a change in the channel width W. This indicates that the unusual stability of these heaps can be accounted for by the flowing layer and its friction on the sidewalls. A simple depth-averaged model, assuming Coulomb friction, shows that the SSH angle scales as h/W (W being the channel width), and that grain size plays no part.
This paper considers the aeolian transport of sand by a wind so strong that the concentration of sand near the bed makes collisions between grains inevitable. It employs an improved model of such a collisional flow which includes turbulent suspension, viscous dissipation and new top boundary conditions that are validated by numerical calculations of collisionless trajectories.
The United States Department of Energy (DOE) has published a progression of technical targets to be satisfied by on-board rechargeable hydrogen storage systems in light-duty vehicles. By combining simplified storage system and vehicle models with interpolated data from metal hydride databases, we obtain material-level requirements for metal hydrides that can be assembled into systems that satisfy the DOE targets for 2017. We assume minimal balance-of-plant components for systems with and without a hydrogen combustion loop for supplemental heating. Tank weight and volume are driven by the stringent requirements for refueling time. The resulting requirements suggest that, at least for this specific application, no current on-board rechargeable metal hydride satisfies these requirements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.