Two detailed, unit-cell models, a transverse fin design and a longitudinal fin design, of a combined hydride bed and heat exchanger are developed in COMSOL ® Multiphysics incorporating and accounting for heat transfer and reaction kinetic limitations. MatLab ® scripts for autonomous model generation are developed and incorporated into (1) a grid-based and (2) a systematic optimization routine based on the Nelder-Mead downhill simplex method to determine the geometrical parameters that lead to the optimal structure for each fin design that maximizes the hydrogen stored within the hydride.The optimal designs for both the transverse and longitudinal fin designs point toward closely-spaced, small cooling fluid tubes. Under the hydrogen feed conditions studied (50 bar), a 25 times improvement or better in the hydrogen storage kinetics will be required to simultaneously meet the Department of Energy technical targets for gravimetric capacity and fill time. These models and methodology can be rapidly applied to other hydrogen storage materials, such as other metal hydrides or to cryoadsorbents, in future work.
We analyze simple shear and torsion of single crystal copper by employing experiments, molecular dynamics simulations, and finite element simulations in order to focus on the kinematic responses and the apparent yield strengths at different length scales of the specimens. In order to compare torsion with simple shear, the specimens were designed to be of similar size. To accomplish this, the ratio of the cylinder circumference to the axial gage length in torsion equaled the ratio of the length to height of the simple shear specimens (0.43). With the [110] crystallographic direction parallel to the rotational axis of the specimen, we observed a deformation wave of material that oscillated around the specimen in torsion and through the length of the specimen in simple shear. In torsion, the ratio of the wave amplitude divided by cylinder circumference ranged from 0.02–0.07 for the three different methods of analysis: experiments, molecular dynamics simulations, and finite element simulations. In simple shear, the ratio of the deformation wave amplitude divided by the specimen length and the corresponding values predicted by the molecular dynamics and finite element simulations (simple shear experiments were not performed) ranged from 0.23–0.26. Although each different analysis method gave similar results for each type boundary condition, the simple shear case gave approximately five times more amplitude than torsion. We attributed this observation to the plastic spin behaving differently as the simple shear case constrained the dislocation activity to planar double slip, but the torsion specimen experienced quadruple slip. The finite element simulations showed a clear relation with the plastic spin and the oscillation of the material wave. As for the yield stress in simple shear, a size scale dependence was found regarding two different size atomistic simulations for copper (332 atoms and 23628 atoms). We extrapolated the atomistic yield stresses to the order of a centimeter, and these comparisons were close to experimental data in the literature and the present study.
An important aspect of damage evolution in cast Al-Si-Mg base alloys is fracture/cracking of Si particles. This microstructural damage is quantitatively characterized as a function of strain rate in the range 10 Ϫ4 to 3.7 ϫ 10 ϩ3 , at an approximately constant uniaxial compressive strain level (20 to 25 pct). It is shown that the fraction of damaged silicon particles, their average size, and size distribution do not vary significantly with the strain rate, and at all strain rates studied, larger Si particles are more likely to crack than the smaller ones. However, the stress-strain curves are sensitive to the strain rate. These observations have implications for modeling of deformation and fracture of cast components under high strain rate crash conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.