Quinolones are degraded by light with loss of their antimicrobial activity, generating active species or radicals. Evidence exists that some fluoroquinolones (lomefloxacin, fleroxacin and enoxacin) induce damage to the cellular membrane and DNA cleavage by photosensitization. In this study, the genotoxic potential of the quinolones ofloxacin, nalidixic acid and ciprofloxacin (three antimicrobials frequently used in therapy) was evaluated upon irradiation with UV light by using the comet assay on cells of the Jurkat line. The results demonstrate that there are significant differences between the control groups (positive control with 50 microM H2O2, negative controls without drug and with and without irradiation) and the groups of irradiated quinolones (ofloxacin 2.76 x 10(-5) M, nalidixic acid 2.15 x 10(-4) M and ciprofloxacin 2.01 x 10(-5) M), indicating that, at the dose of irradiation employed (necessary to produce 50% photodegradation), the photodecomposition of the quinolones enhanced DNA damage. The unirradiated drugs also exhibited genotoxicity significantly different from that of the negative control.
Quinolones are degraded by light with loss of their antimicrobial activity, generating active species or radicals, Evidence exists that some fluoroquinolones (lomefloxacin, fleroxacin and enoxacin) induce damage to the cellular membrane and DNA cleavage by photosensitization. In this study, the genotoxic potential of the quinolones ofloxacin, nalidixic acid and ciprofloxacin (three antimicrobials frequently used in therapy) was evaluated upon irradiation with UV light by using the comet assay on cells of the Jurkat line. The results demonstrate that there are significant differences between the control groups (positive control with 50 μM H2O2, negative controls without drug and with and without irradiation) and the groups of irradiated quinolones (ofloxacin 2.76 × 10−5M, nalidixic acid 2.15 × 10−4M and ciprofloxacin 2.01 × 10−5M), indicating that, at the dose of irradiation employed (necessary to produce 50% photodegradation), the photodecomposition of the quinolones enhanced DNA damage. The unirradiated drugs also exhibited genotoxicity significantly different from that of the negative control.
Quinolones are degraded by light with loss of their antimicrobial activity, generating active species or radicals. Evidence exists that some fluoroquinolones (lomefloxacin, fleroxacin and enoxacin) induce damage to the cellular membrane and DNA cleavage by photosensitization. In this study, the genotoxic potential of the quinolones ofloxacin, nalidixic acid and ciprofloxacin (three antimicrobials frequently used in therapy) was evaluated upon irradiation with UV light by using the comet assay on cells of the Jurkat line. The results demonstrate that there are significant differences between the control groups (positive control with 50 microM H2O2, negative controls without drug and with and without irradiation) and the groups of irradiated quinolones (ofloxacin 2.76 x 10(-5) M, nalidixic acid 2.15 x 10(-4) M and ciprofloxacin 2.01 x 10(-5) M), indicating that, at the dose of irradiation employed (necessary to produce 50% photodegradation), the photodecomposition of the quinolones enhanced DNA damage. The unirradiated drugs also exhibited genotoxicity significantly different from that of the negative control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.