Different lipase enzymes have been tested in order to perform regioselective acetylations on the eudesmane tetrol from vulgarin. High yields (95%) of 1,12-diacetoxy derivative (4) were achieved in 1 h with Candida antarctica lipase (CAL). However, only the 12-acetyl derivative (6) was obtained in similar yield with Mucor miehei (MML) or Candida cylindracea (CCL) lipases. The enzymatic protection at C-1 and C-12 has been used to form eudesmane cyclic-sulfites between C-6 and C-4 atoms. The R/S-sulfur configuration has been assigned by means of the experimental and theoretical (13)C and (1)H NMR chemical shifts. The theoretical shifts were calculated using the GIAO method, with a MM+ geometry optimization followed by a single-point calculation at the B3LYP/6-31G(*) level (B3LYP/6-31G(*)//MM+). Moreover, B3LYP/6-31G(*) geometry optimizations were carried out to test the B3LYP/6-31G(*)//MM+ results, for the deacetylated sulfites (12 and 15). In addition to the delta(C) and delta(H) shifts, the (3)J(HH) coupling constants were also calculated and compared with the experimental values when available. Finally, different reactivities have been checked in both sulfites by biotransformation with Rhizopus nigricans. While the R-sulfite gave 2 alpha- and 11 beta-hydroxylated metabolites, the S-sulfite yielded only regioselective deacetylations. Furthermore, both sulfites showed different reactivities in redox processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.