Genital human Papillomavirus infection is common and only a minor fraction of infected subjects develop progressing cervical epithelial lesions or cancer. Bypassing local immune responses is important for the development of cervical cancer. In this work we determined the cytokine pattern in samples from patients with cervical cancer. Thus, we examined the local mRNA expression profile of helper T cell type 1 (Th1), Th2, and Th3 cytokines in HPV-positive cervical cancer biopsies by reverse transcription-polymerase chain reaction. Our data indicate that 80% of the tumors expressed low levels of CD4 mRNA, with all of them expressing higher CD8 mRNA levels. Most tumors expressed interleukin (IL)-4 and IL-10 mRNAs and, most importantly, all of them expressed transforming growth factor (TGF)-beta1 and interferon gamma mRNA. None of the tumors studied expressed IL-12, IL-6, or tumor necrosis factor (TNF) mRNA. Immunohistochemical analysis identified IL-10 only in tumor cells and koilocytic cells, but not in tumor-infiltrating lymphocytes, suggesting that IL-10-producing cells are those transformed by HPV. We found a correlation between immunostaining for IL-10 protein and the level of IL-10 mRNA expression. Moreover, supernatants from HPV-transformed cell cultures contained IL-10 and TGF- beta1. Our findings indicate a predominant expression of immunosuppressive cytokines, which might help downregulate tumor-specific immune responses in the microenvironment of the tumor. This information may be useful for cervical cancer immunotherapies or for therapeutic vaccine design against Human Papillomavirus.
The role of B cells as APC is well established. However, their ability to prime naive T cells in vivo has been difficult to examine because of the presence of dendritic cells. The current studies were undertaken to examine this issue in a model of adoptive transfer of antigen-specific B cells and T cells into histoincompatible Rag2 -/-mice. By means of this system, we were able to demonstrate that antigen-specific B cells are competent APC for naive CD4 + T cells specific for the same antigen. In vivo antigen presentation resulted in expansion of both CD4 + T cells and B cells. The antigen-presenting function of the transferred B cells was dependent on the CD154-CD40 interaction, as transfer of CD154-deficient antigen-specific CD4 + T cells or CD40-deficient B cells failed to induce T and B cell expansion in response to immunization. These results indicate that antigenspecific B cells have the capacity to induce primary T cell responses in the absence of other competent APC.
BackgroundCervical carcinoma (CC) is a leading cause of death among women worldwide. Human papilloma virus (HPV) is a major etiological factor in CC and HPV 16 is the more frequent viral type present. Our aim was to characterize metabolic pathways altered in HPV 16 tumor samples by means of transcriptome wide analysis and bioinformatics tools for visualizing expression data in the context of KEGG biological pathways.ResultsWe found 2,067 genes significantly up or down-modulated (at least 2-fold) in tumor clinical samples compared to normal tissues, representing ~3.7% of analyzed genes. Cervical carcinoma was associated with an important up-regulation of Wnt signaling pathway, which was validated by in situ hybridization in clinical samples. Other up-regulated pathways were those of calcium signaling and MAPK signaling, as well as cell cycle-related genes. There was down-regulation of focal adhesion, TGF-β signaling, among other metabolic pathways.ConclusionThis analysis of HPV 16 tumors transcriptome could be useful for the identification of genes and molecular pathways involved in the pathogenesis of cervical carcinoma. Understanding the possible role of these proteins in the pathogenesis of CC deserves further studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.