The precise roles of B cells in promoting the pathogenesis of type 1 diabetes remain undefined. Here, we demonstrate that B cell depletion in mice can prevent or delay diabetes, reverse diabetes after frank hyperglycemia, and lead to the development of cells that suppress disease. To determine the efficacy and potential mechanism of therapeutic B cell depletion, we generated a transgenic NOD mouse expressing human CD20 (hCD20) on B cells. A single cycle of treatment with an antibody specific for hCD20 temporarily depleted B cells and significantly delayed and/or reduced the onset of diabetes. Furthermore, disease established to the point of clinical hyperglycemia could be reversed in over one-third of diabetic mice. Why B cell depletion is therapeutic for a variety of autoimmune diseases is unclear, although effects on antibodies, cytokines, and antigen presentation to T cells are thought to be important. In B cell-depleted NOD mice, we identified what we believe is a novel mechanism by which B cell depletion may lead to long-term remission through expansion of Tregs and regulatory B cells. Our results demonstrate clinical efficacy even in established disease and identify mechanisms for therapeutic action that will guide design and evaluation of parallel studies in patients.
During inflammation, cell surface adhesion molecules guide the adhesion and migration of circulating leukocytes across the endothelial cells lining the blood vessels to access the site of injury. The transmembrane molecule CD13 is expressed on monocytes and endothelial cells and has been shown to mediate homotypic cell adhesion, which may imply a role for CD13 in inflammatory monocyte trafficking. Here, we show that ligation and clustering of CD13 by mAb or viral ligands potently induce myeloid cell/endothelial adhesion in a signal transduction-dependent manner involving monocytic cytoskeletal rearrangement and filopodia formation. Treatment with soluble recombinant (r)CD13 blocks this CD13-dependent adhesion, and CD13 molecules from monocytic and endothelial cells are present in the same immunocomplex, suggesting a direct participation of CD13 in the adhesive interaction. This concept is strengthened by the fact that activated monocytic cells adhere to immobilized recombinant CD13. Furthermore, treatment with anti-CD13 antibodies in a murine model of peritonitis results in a decrease in leukocyte infiltration into the peritoneum, suggesting a potential role for CD13 in leukocyte trafficking in vivo. Therefore, this work supports a new direction for CD13 biology, where these cell surface molecules act as true molecular interfaces that induce and participate in critical inflammatory cell interactions.
The role of B cells as APC is well established. However, their ability to prime naive T cells in vivo has been difficult to examine because of the presence of dendritic cells. The current studies were undertaken to examine this issue in a model of adoptive transfer of antigen-specific B cells and T cells into histoincompatible Rag2 -/-mice. By means of this system, we were able to demonstrate that antigen-specific B cells are competent APC for naive CD4 + T cells specific for the same antigen. In vivo antigen presentation resulted in expansion of both CD4 + T cells and B cells. The antigen-presenting function of the transferred B cells was dependent on the CD154-CD40 interaction, as transfer of CD154-deficient antigen-specific CD4 + T cells or CD40-deficient B cells failed to induce T and B cell expansion in response to immunization. These results indicate that antigenspecific B cells have the capacity to induce primary T cell responses in the absence of other competent APC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.