Estimation of Remaining Useful Life (RUL) is a crucial task in Prognostics and Health Management (PHM) for condition-based maintenance of machinery. In order to transmit and store the sensor data for archiving and long term analysis, data compression techniques are regularly used to reduce the requirements of bandwidth, energy and storage in modern remote PHM systems. In these systems the challenge arises of how the compressed sensor data affects the RUL estimation algorithms. A main drawback of conventional statistical modeling approaches is that they require expert prior knowledge and a significant number of assumptions. Alternative regression based approaches and deep neural networks are known to have issues when modeling long-term dependencies in the sequential data. Recently Long Short-Term Memory (LSTM) neural networks have been proposed to overcome these issues and in this paper we create a LSTM network and data fusion approach that can estimate the RUL with compressed (distorted) data. The experimental results indicate that the proposed method is able to estimate RUL reliably with narrower error bands compared to other state-of-the-art approaches. Moreover, the proposed method is able to predict RUL from both the raw and compressed datasets with comparable accuracy. INDEX TERMS Machine health monitoring, remaining useful life (RUL), long-short term memory, recurrent neural network, data compression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.