The efficacy of implanted biomedical devices is often compromised by host recognition and subsequent foreign body responses. Here, we demonstrate the role of the geometry of implanted materials on their biocompatibility in vivo. In rodent and non-human primate animal models, implanted spheres 1.5 mm and above in diameter across a broad spectrum of materials, including hydrogels, ceramics, metals, and plastics, significantly abrogated foreign body reactions and fibrosis when compared to smaller spheres. We also show that for encapsulated rat pancreatic islet cells transplanted into streptozotocin-treated diabetic C57BL/6 mice, islets prepared in 1.5 mm alginate capsules were able to restore blood-glucose control for up to 180 days, a period more than 5-fold longer than for transplanted grafts encapsulated within conventionally sized 0.5-mm alginate capsules. Our findings suggest that the in vivo biocompatibility of biomedical devices can be significantly improved by simply tuning their spherical dimensions.
OBJECTIVETo describe trends of primary efficacy and safety outcomes of islet transplantation in type 1 diabetes recipients with severe hypoglycemia from the Collaborative Islet Transplant Registry (CITR) from 1999 to 2010.RESEARCH DESIGN AND METHODSA total of 677 islet transplant-alone or islet-after-kidney recipients with type 1 diabetes in the CITR were analyzed for five primary efficacy outcomes and overall safety to identify any differences by early (1999–2002), mid (2003–2006), or recent (2007–2010) transplant era based on annual follow-up to 5 years.RESULTSInsulin independence at 3 years after transplant improved from 27% in the early era (1999–2002, n = 214) to 37% in the mid (2003–2006, n = 255) and to 44% in the most recent era (2007–2010, n = 208; P = 0.006 for years-by-era; P = 0.01 for era alone). C-peptide ≥0.3 ng/mL, indicative of islet graft function, was retained longer in the most recent era (P < 0.001). Reduction of HbA1c and resolution of severe hypoglycemia exhibited enduring long-term effects. Fasting blood glucose stabilization also showed improvements in the most recent era. There were also modest reductions in the occurrence of adverse events. The islet reinfusion rate was lower: 48% by 1 year in 2007–2010 vs. 60–65% in 1999–2006 (P < 0.01). Recipients that ever achieved insulin-independence experienced longer duration of islet graft function (P < 0.001).CONCLUSIONSThe CITR shows improvement in primary efficacy and safety outcomes of islet transplantation in recipients who received transplants in 2007–2010 compared with those in 1999–2006, with fewer islet infusions and adverse events per recipient.
The transplantation of glucose-responsive, insulin-producing cells offers the potential for restoring glycemic control in diabetic patients1. Pancreas transplantation and the infusion of cadaveric islets are currently implemented clinically2, but are limited by the adverse effects of lifetime immunosuppression and the limited supply of donor tissue3. The latter concern may be addressed by recently described glucose responsive mature β-cells derived from human embryonic stem cells; called SC-β, these cells may represent an unlimited human cell source for pancreas replacement therapy4. Strategies to address the immunosuppression concern include immunoisolation of insulin-producing cells with porous biomaterials that function as an immune barrier5,6. However, clinical implementation has been challenging due to host immune responses to implant materials7. Here, we report the first long term glycemic correction of a diabetic, immune-competent animal model with human SC-β cells. SC-β cells were encapsulated with alginate-derivatives capable of mitigating foreign body responses in vivo, and implanted into the intraperitoneal (IP) space of streptozotocin-treated (STZ) C57BL/6J mice. These implants induced glycemic correction until removal at 174 days without any immunosuppression. Human C-peptide concentrations and in vivo glucose responsiveness demonstrate therapeutically relevant glycemic control. Implants retrieved after 174 days contained viable insulin-producing cells.
Despite advances in the differentiation of insulin-producing cells from human embryonic stem cells, the generation of mature functional β cells in vitro has remained elusive. To accomplish this goal, we have developed cell culture conditions to closely mimic events occurring during pancreatic islet organogenesis and β cell maturation. In particular, we have focused on recapitulating endocrine cell clustering by isolating and reaggregating immature β-like cells to form islet-sized enriched β-clusters (eBCs). eBCs display physiological properties analogous to primary human β cells, including robust dynamic insulin secretion, increased calcium signalling in response to secretagogues, and improved mitochondrial energization. Notably, endocrine cell *
Glucotoxicity and lipotoxicity contribute to the impaired -cell function observed in type 2 diabetes. Here we examine the effect of saturated and monounsaturated fatty acids at different glucose concentrations on human -cell turnover and secretory function. Exposure of cultured human islets to saturated fatty acid and/or to an elevated glucose concentration for 4 days increased -cell DNA fragmentation and decreased -cell proliferation. In contrast, the monounsaturated palmitoleic acid or oleic acid did not affect DNA fragmentation and induced -cell proliferation. Moreover, each monounsaturated fatty acid prevented the deleterious effects of both palmitic acid and high glucose concentration. The cell-permeable ceramide analogue C 2 -ceramide mimicked both the palmitic acid-induced -cell apoptosis and decrease in proliferation. Furthermore, the ceramide synthetase inhibitor fumonisin B1 blocked the deleterious effects of palmitic acid on -cell turnover. In addition, palmitic acid decreased Bcl-2 expression and induced release of cytochrome c from the mitochondria into the cytosol, which was prevented by fumonisin B1 and by oleic acid. Finally, each monounsaturated fatty acid improved -cell secretory function that was reduced by palmitic acid and by high glucose. Thus, in human islets, the saturated palmitic acid and elevated glucose concentration induce -cell apoptosis, decrease -cell proliferation, and impair -cell function, which can be prevented by monounsaturated fatty acids. The deleterious effect of palmitic acid is mediated via formation of ceramide and activation of the apoptotic mitochondrial pathway, whereas Bcl-2 may contribute to the protective effect of monounsaturated fatty acids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.