Graphite vaporization provides an uncontrolled yet efficient means of producing fullerene molecules. However, some fullerene derivatives or unusual fullerene species might only be accessible through rational and controlled synthesis methods. Recently, such an approach has been used to produce isolable amounts of the fullerene C(60) from commercially available starting materials. But the overall process required 11 steps to generate a suitable polycyclic aromatic precursor molecule, which was then dehydrogenated in the gas phase with a yield of only about one per cent. Here we report the formation of C(60) and the triazafullerene C(57)N(3) from aromatic precursors using a highly efficient surface-catalysed cyclodehydrogenation process. We find that after deposition onto a platinum (111) surface and heating to 750 K, the precursors are transformed into the corresponding fullerene and triazafullerene molecules with about 100 per cent yield. We expect that this approach will allow the production of a range of other fullerenes and heterofullerenes, once suitable precursors are available. Also, if the process is carried out in an atmosphere containing guest species, it might even allow the encapsulation of atoms or small molecules to form endohedral fullerenes.
One of the outstanding advancements in electronic-structure density-functional methods is the Sankey-Niklewski (SN) approach [Sankey and Niklewski, Phys. Rev. B 40, 3979 (1989)]; a method for computing total energies and forces, within an ab initio tight-binding formalism. Over the past two decades, several improvements to the method have been proposed and utilized to calculate materials ranging from biomolecules to semiconductors. In particular, the improved method (called FIREBALL) uses separable pseudopotentials and goes beyond the minimal sp 3 basis set of the SN method, allowing for double numerical (DN) basis sets with the addition of polarization orbitals and d-orbitals to the basis set. Herein, we report a review of the method, some improved theoretical developments, and some recent application to a variety of systems.ß 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim 1 Introduction With the increase in computational power, greater efforts have been made by the electronicstructure community to optimize the performance of quantum mechanical methods. Quantum mechanical methods have become increasingly reliable as a complementary tool to experimental research. A variety of methods exist ranging in complexity from semi-empirical methods to density-functional theory (DFT) methods to highly-accurate methods going beyond the one-electron picture. Judicious approximations enable the computational materials science community to more efficiently examine a wider range of materials questions.Otto F. Sankey was one of the early visionaries by, firstly, demonstrating that molecular-dynamics (MD) simulations can be coupled efficiently with electronic-structure methods to optimize structures and evaluate energetics of materials [1]. Secondly, his judicious approximations in the
The Sn͞Ge(111) interface has been investigated across the 3 3 3 ! p 3 3 p 3 R30 ± phase transition using core level and valence band photoemission spectroscopies. We find, both above and below the transition, two different components in the Sn 4d core level and a band splitting in the surface state crossing the Fermi energy. Theoretical calculations show that these two effects are due to the existence of two structurally different kinds of Sn atoms that fluctuate at room temperature between two positions and are stabilized in a 3 3 3 structure at low temperature. [S0031-9007(98)
A new approximate method to calculate exchange-correlation contributions in the framework of first-principles tight-binding molecular dynamics methods has been developed. In the proposed scheme on-site (off-site) exchange-correlation matrix elements are expressed as a one-center (twocenter) term plus a correction due to the rest of the atoms. The one-center (two-center) term is evaluated directly, while the correction is calculated using a variation of the Sankey-Niklewski[1] approach generalized for arbitrary atomic-like basis sets. The proposed scheme for exchangecorrelation part permits the accurate and computationally efficient calculation of corresponding tight-binding matrices and atomic forces for complex systems. We calculate bulk properties of selected transition (W,Pd), noble (Au) or simple (Al) metals, a semiconductor (Si) and the transition metal oxide TiO 2 with the new method to demonstrate its flexibility and good accuracy.
A review of our theoretical understanding of the band alignment at organic interfaces is presented with particular emphasis on the metal/organic (MO) case. The unified IDIS (induced density of interface states) and the ICT (integer charge transfer) models are reviewed and shown to describe qualitatively and semiquantitatively the barrier height formation at those interfaces. The IDIS model, governed by the organic CNL (charge neutrality level) and the interface screening includes: (a) charge transfer across the interface; (b) the "pillow" (or Pauli) effect associated with the compression of the metal wavefunction tails; and (c) the molecular dipoles. We argue that the ICT-model can be described as a limiting case of the unified IDIS-model for weak interface screening. For a fully quantitative understanding of the band alignment at organic interfaces, use of DFT (density functional theory) or quantum chemistry methods is highly desirable. In this Perspective review, we concentrate our discussion on DFT and show that conventional LDA or GGA calculations are limited by the "energy gap problem of the organic materials", because the LDA (or GGA) Kohn-Sham energy levels have to be corrected by the self-interaction energy of the corresponding wavefunction, to provide the appropriate molecule transport energy gap. Image potential and polarization effects at MO interfaces tend to cancel these self-interaction corrections; in particular, we show that for organic molecules lying flat on Cu and Ag, these cancellations are so strong that we can rely on conventional DFT to calculate their interface properties. For Au, however, the cancellations are weaker making it necessary to go beyond conventional DFT. We discuss several alternatives beyond conventional LDA or GGA. The most accurate approach is the well-known GW-technique, but its use is limited by its high demanding computer time. In a very simple approach one can combine conventional DFT with a "scissor" operator which incorporates self-interaction corrections and polarization effects in the organic energy levels. Hybrid potentials combined with conventional DFT represent, probably, the best alternative for having a simple and accurate approach for analyzing organic interfaces. The problem then is to find an appropriate one for both the metal and the organic material in a plane-wave formulation; we show, however, how to overcome this difficulty using a local-orbital basis formulation. As examples of these alternatives, we present some DFT-calculations for several organic interfaces, using either the scissor operator or a hybrid potential, which can be interpreted in terms of the unified IDIS-model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.