BackgroundMany methodologies have been used in research to identify the “intrinsic” subtypes of breast cancer commonly known as Luminal A, Luminal B, HER2-Enriched (HER2-E) and Basal-like. The PAM50 gene set is often used for gene expression-based subtyping; however, surrogate subtyping using panels of immunohistochemical (IHC) markers are still widely used clinically. Discrepancies between these methods may lead to different treatment decisions.MethodsWe used the PAM50 RT-qPCR assay to expression profile 814 tumors from the GEICAM/9906 phase III clinical trial that enrolled women with locally advanced primary invasive breast cancer. All samples were scored at a single site by IHC for estrogen receptor (ER), progesterone receptor (PR), and Her2/neu (HER2) protein expression. Equivocal HER2 cases were confirmed by chromogenic in situ hybridization (CISH). Single gene scores by IHC/CISH were compared with RT-qPCR continuous gene expression values and “intrinsic” subtype assignment by the PAM50. High, medium, and low expression for ESR1, PGR, ERBB2, and proliferation were selected using quartile cut-points from the continuous RT-qPCR data across the PAM50 subtype assignments.ResultsESR1, PGR, and ERBB2 gene expression had high agreement with established binary IHC cut-points (area under the curve (AUC) ≥ 0.9). Estrogen receptor positivity by IHC was strongly associated with Luminal (A and B) subtypes (92%), but only 75% of ER negative tumors were classified into the HER2-E and Basal-like subtypes. Luminal A tumors more frequently expressed PR than Luminal B (94% vs 74%) and Luminal A tumors were less likely to have high proliferation (11% vs 77%). Seventy-seven percent (30/39) of ER-/HER2+ tumors by IHC were classified as the HER2-E subtype. Triple negative tumors were mainly comprised of Basal-like (57%) and HER2-E (30%) subtypes. Single gene scoring for ESR1, PGR, and ERBB2 was more prognostic than the corresponding IHC markers as shown in a multivariate analysis.ConclusionsThe standard immunohistochemical panel for breast cancer (ER, PR, and HER2) does not adequately identify the PAM50 gene expression subtypes. Although there is high agreement between biomarker scoring by protein immunohistochemistry and gene expression, the gene expression determinations for ESR1 and ERBB2 status was more prognostic.
Purpose: Classic lobular carcinomas (CLC) account for 10% to 15% of all breast cancers. At the genetic level, CLCs show recurrent physical loss of chromosome16q coupled with the lack of E-cadherin (CDH1 gene) expression. However, little is known about the putative therapeutic targets for these tumors. The aim of this study was to characterize CLCs at the molecular genetic level and identify putative therapeutic targets. Experimental Design: We subjected 13 cases of CLC to a comprehensive molecular analysis including immunohistochemistry for E-cadherin, estrogen and progesterone receptors, HER2/ neu and p53; high-resolution comparative genomic hybridization (HR-CGH); microarray-based CGH (aCGH); and fluorescent and chromogenic in situ hybridization for CCND1 and FGFR1. Results: All cases lacked the expression of E-cadherin, p53, and HER2, and all but one case was positive for estrogen receptors. HR-CGH revealed recurrent gains on 1q and losses on 16q (both, 85%). aCGH showed a good agreement with but higher resolution and sensitivity than HR-CGH. Recurrent, high level gains at 11q13 (CCND1) and 8p12-p11.2 were identified in seven and six cases, respectively, and were validated with in situ hybridization. Examination of aCGH and the gene expression profile data of the cell lines, MDA-MB-134 and ZR-75-1, which harbor distinct gains of 8p12-p11.2, identified FGFR1 as a putative amplicon driver of 8p12-p11.2 amplification in MDA-MB-134. Inhibition of FGFR1 expression using small interfering RNA or a small-molecule chemical inhibitor showed that FGFR1 signaling contributes to the survival of MDA-MB-134 cells. Conclusions: Our findings suggest that receptor FGFR1 inhibitors may be useful as therapeutics in a subset of CLCs.
Metastatic disease is the primary cause of death in cutaneous malignant melanoma (CMM) patients. To understand the mechanisms of CMM metastasis and identify potential predictive markers, we analyzed gene-expression profiles of 34 vertical growth phase melanoma cases using cDNA microarrays. All patients had a minimum follow-up of 36 months. Twenty-one cases developed nodal metastatic disease and 13 did not. Comparison of gene expression profiling of metastatic and nonmetastatic melanoma cases identified 243 genes with a >2-fold differential expression ratio and a false discovery rate of <0.2 (206 up-regulated and 37 down-regulated). This set of genes included molecules involved in cell cycle and apoptosis regulation, epithelial-mesenchymal transition (EMT), signal transduction, nucleic acid binding and transcription, protein synthesis and degradation, metabolism, and a specific group of melanoma-and neural-related proteins. Validation of these expression data in an independent series of melanomas using tissue microarrays confirmed that the expression of a set of proteins included in the EMT group (N-cadherin, osteopontin, and SPARC/osteonectin) were significantly associated with metastasis development. Our results suggest that EMT-related genes contribute to the promotion of the metastatic phenotype in primary CMM by supporting specific adhesive, invasive, and migratory properties. These data give a better understanding of the biology of this aggressive tumor and may provide new prognostic and patient stratification markers in addition to potential therapeutic targets. [Cancer Res 2007;67(7):3450-60]
Purpose: To characterize the molecular genetic profiles of grade 3 invasive ductal carcinomas of no special type using high-resolution microarray-based comparative genomic hybridization (aCGH) and to identify recurrent amplicons harboring putative therapeutic targets associated with luminal, HER-2, and basal-like tumor phenotypes. Experimental Design: Ninety-five grade 3 invasive ductal carcinomas of no special type were classified into luminal, HER-2, and basal-like subgroups using a previously validated immunohistochemical panel. Tumor samples were microdissected and subjected to aCGH using a tiling path 32K BAC array platform. Selected regions of recurrent amplification were validated by means of in situ hybridization. Expression of genes pertaining to selected amplicons was investigated using quantitative real-time PCR and gene silencing was done using previously validated short hairpin RNA constructs. Results: We show that basal-like and HER-2 tumors are characterized by ''sawtooth'' and ''firestorm'' genetic patterns, respectively, whereas luminal cancers were more heterogeneous. Apart from confirming known amplifications associated with basal-like (1q21, 10p, and 12p), luminal (8p12, 11q13, and 11q14), and HER-2 (17q12) cancers, we identified previously unreported recurrent amplifications associated with each molecular subgroup: 19q12 in basal-like, 1q32.1 in luminal, and 14q12 in HER-2 cancers. PPM1D gene amplification (17q23.2) was found in 20% and 8% of HER-2 and luminal cancers, respectively. Silencing of PPM1D by short hairpin RNA resulted in selective loss of viability in tumor cell lines harboring the 17q23.2 amplification. Conclusions: Our results show the power of aCGH analysis in unraveling the genetic profiles of specific subgroups of cancer and for the identification of novel therapeutic targets.
SIRT1 is a positive regulator of telomere length and attenuates age-associated telomere shortening.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.