Supramolecular complexation behavior of cucurbiturils with paramagnetic nitroxide spin probes was examined by (1)H NMR, X-ray diffraction studies of crystals, computation, and EPR. Both cucurbit[7]uril (CB7) and cucurbit[8]uril (CB8) form a 1:1 complex with 4-(N,N,N-trimethylammonium)-2,2,6,6-tetramethylpiperidinyl-N-oxy bromide (CAT1). The structure of the complex in the solid state was inferred by X-ray diffraction studies and in the gas phase by computation (B3LYP/6-31G(d)). Whereas ESI-MS data provided evidence for the existence of the complex in solution, indirect evidence was obtained through (1)H NMR studies with a structural diamagnetic analogue, 4-(N,N,N-trimethylammonium)-2,2,6,6-tetramethyl-N-methylpiperidine iodide (DCAT1). The EPR spectrum of the CAT1@CB7 complex consisting of three lines suggested that probe CAT1 is associated with host CB7 such that the nitroxide part is exposed to water. The spectral pattern was independent of the concentration of the complex and the presence of salt such as NaCl. The most interesting observation was made with CB8 as the host. In this case, in addition to the expected three-line spectrum, an additional spectrum consisting of seven lines was recorded. The contribution of the seven-line spectrum to the total spectrum was dependent on the concentration of the complex and added salt (NaCl) to the aqueous solution. The coupling constant for the seven-line spectrum for (14)N-substituted CAT1 is 5 G, and that for the four-line spectrum for (15)N-substituted CAT1 is 7.15 G. The only manner by which we could reproduce the observed spectra by simulation for both (14)N- and (15)N-substituted CAT1@CB8 was by assuming a spin exchange among three nitroxide radicals. To account for this observation, we hypothesize that three CAT1 molecules included within CB8 interact in such a way that there is an association of three supramolecules of CAT1@CB8 (i.e., [CAT1@CB8](3)) in a triangular geometry that leads to spin exchange between the three radical centers. We have established, with the help of 13 additional examples, that this is a general phenomenon. We are in the process of understanding this unusual phenomenon.
A proof-of-principle for the application of a photoinduced pH jump for delivery of the Hoechst 33258 drug by disassembly of its host-guest complex with cucurbit[7]uril is described.
Guest induced shape change of the cucurbit[8]uril cavity is likely rate limiting in the supramolecular photocatalytic cycle for CB8 mediated photodimerization of 6-methylcoumarin.Scheme 1 Left: supramolecular photocatalysis of 1 mediated by CB8. Right: single crystal XRD of 1 : 2 CB8-1 HG complex.
The discovery of stimuli‐responsive high affinity host–guest pairs with potential applications under biologically relevant conditions is a challenging goal. This work reports a high‐affinity 1:1 complex formed between cucurbit[8]uril and a water‐soluble photochromic diarylethene derivative. It was found that, by confining the open isomer within the cavity of the receptor, a redshift in the absorption spectrum and an enhancement of the photocyclization quantum yield from Φ=0.04 to Φ=0.32 were induced. This improvement in the photochemical performance enables quantitative photocyclization with visible light that, together with the near‐infrared light‐induced ring‐opening reaction and the 100‐fold selectivity for the closed isomer, confirms this as an outstanding light‐responsive affinity pair.
The self-organization of cucurbit[n]uril (n = 7 and 8, CBs) complexes was probed by electrospray mass spectrometry. The self-association of CB complexes is a general phenomenon but shows some dependence on the absence, presence, and type of included guest molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.