Deficiens (defA+) is a homeotic gene involved in the genetic control of Antirrhinum majus flower development. Mutation of this gene (defA‐1) causes homeotic transformation of petals into sepals and of stamina into carpels in flowers displaying the ‘globifera’ phenotype, as shown by cross sections and scanning electronmicroscopy of developing flowers. A cDNA derived from the wild type defA+ gene has been cloned by differential screening of a subtracted ‘flower specific’ cDNA library. The identity of this cDNA with the defA+ gene product has been confirmed by utilizing the somatic and germinal instability of defA‐1 mutants. According to Northern blot analyses the defA+ gene is expressed in flowers but not in leaves, and its expression is nearly constant during all stages of flower development. The 1.1 kb long mRNA has a 681 bp long open reading frame that can code for a putative protein of 227 amino acids (mol. wt 26.2 kd). At its N‐terminus the DEF A protein reveals homology to a conserved domain of the regulatory proteins SRF (activating c‐fos) in mammals and GRM/PRTF (regulating mating type) in yeast. We discuss the structure and the possible function of the DEF A protein in the control of floral organogenesis.
The model plants Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have provided a wealth of information about genes and genetic pathways controlling the flowering process, but little is known about the corresponding pathways in legumes. The garden pea (Pisum sativum) has been used for several decades as a model system for physiological genetics of flowering, but the lack of molecular information about pea flowering genes has prevented direct comparison with other systems. To address this problem, we have searched expressed sequence tag and genome sequence databases to identify flowering-gene-related sequences from Medicago truncatula, soybean (Glycine max), and Lotus japonicus, and isolated corresponding sequences from pea by degenerate-primer polymerase chain reaction and library screening. We found that the majority of Arabidopsis flowering genes are represented in pea and in legume sequence databases, although several gene families, including the MADS-box, CONSTANS, and FLOWERING LOCUS T/TERMINAL FLOWER1 families, appear to have undergone differential expansion, and several important Arabidopsis genes, including FRIGIDA and members of the FLOWERING LOCUS C clade, are conspicuously absent. In several cases, pea and Medicago orthologs are shown to map to conserved map positions, emphasizing the closely syntenic relationship between these two species. These results demonstrate the potential benefit of parallel model systems for an understanding of flowering phenology in crop and model legume species.The change from vegetative to reproductive growth is a critical developmental transition in the life of a plant, and the induction, expression, and maintenance of the flowering state are regulated by many external and endogenous factors. A vast number of applied and fundamental studies have demonstrated the importance of light (through daylength and light-quality effects) and temperature (through vernalization and ambient temperature effects) as the main environmental regulators of flowering. However, other factors, including nutrient status, endogenous hormones, stress, and the developmental state of the plant, can also be important. Even with respect to light and temperature, great diversity in responsiveness exists within and between different plant species. These differences are important in the adaptation of species to particular latitudinal and climatic regions, and have also been extremely important for determining the environments and agronomic regimes under which crop species can be most effectively grown.The flowering process has been subject to detailed genetic analysis in Arabidopsis (Arabidopsis thaliana). As a small, weedy annual, Arabidopsis is responsive to a wide range of factors and has been invaluable in outlining the major genetic pathways that are likely to function in the control of flowering responses to photoperiod, vernalization, and hormone responses (Amasino, 2004;Boss et al., 2004;Putterill et al., 2004). It is likely that many of the genetic mechanisms discovered in Arabidopsis ...
A functional genomics project has been initiated to approach the molecular characterization of the main biological and agronomical traits of citrus. As a key part of this project, a citrus EST collection has been generated from 25 cDNA libraries covering different tissues, developmental stages and stress conditions. The collection includes a total of 22,635 high-quality ESTs, grouped in 11,836 putative unigenes, which represent at least one third of the estimated number of genes in the citrus genome. Functional annotation of unigenes which have Arabidopsis orthologues (68% of all unigenes) revealed gene representation in every major functional category, suggesting that a genome-wide EST collection was obtained. A Citrus clementina Hort. ex Tan. cv. Clemenules genomic library, that will contribute to further characterization of relevant genes, has also been constructed. To initiate the analysis of citrus transcriptome, we have developed a cDNA microarray containing 12,672 probes corresponding to 6875 putative unigenes of the collection. Technical characterization of the microarray showed high intra- and inter-array reproducibility, as well as a good range of sensitivity. We have also validated gene expression data achieved with this microarray through an independent technique such as RNA gel blot analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.