Activation tagging using T-DNA vectors that contain multimerized transcriptional enhancers from the cauliflower mosaic virus (CaMV) 35S gene has been applied to Arabidopsis plants. New activation-tagging vectors that confer resistance to the antibiotic kanamycin or the herbicide glufosinate have been used to generate several tens of thousands of transformed plants. From these, over 30 dominant mutants with various phenotypes have been isolated. Analysis of a subset of mutants has shown that overexpressed genes are almost always found immediately adjacent to the inserted CaMV 35S enhancers, at distances ranging from 380 bp to 3.6 kb. In at least one case, the CaMV 35S enhancers led primarily to an enhancement of the endogenous expression pattern rather than to constitutive ectopic expression, suggesting that the CaMV 35S enhancers used here act differently than the complete CaMV 35Spromoter. This has important implications for the spectrum of genes that will be discovered by this method.
The terminal step of fruit development in Arabidopsis involves valve separation from the replum, allowing seed dispersal. This process requires the activities of the SHATTERPROOF MADS-box genes, which promote dehiscence zone differentiation at the valve/replum boundary. Here we show that the FRUITFULL MADS-box gene, which is necessary for fruit valve differentiation, is a negative regulator of SHATTERPROOF expression and that constitutive expression of FRUITFULL is sufficient to prevent formation of the dehiscence zone. Our studies suggest that ectopic expression of FRUITFULL may directly allow the control of pod shatter in oilseed crops such as canola.
The outside of the Arabidopsis thaliana fruit consists of three principal tissues: the valves or seedpod walls, the replum or central ridge between the valves, and the valve margins where the valves separate from the replum to disperse the seeds. Previous studies have shown that valve margin formation is specified by the SHATTERPROOF MADS-box transcription factors and that valve development is controlled by the FRUITFULL MADS-box transcription factor. FRUITFULL negatively regulates SHATTERPROOF to prevent the valves from adopting a valve margin cell fate. Here we identify a gene called REPLUMLESS that is required for replum development. REPLUMLESS encodes a homeodomain protein that prevents replum cells from adopting a valve margin cell fate by negatively regulating expression of the SHATTERPROOF genes. Both REPLUMLESS and FRUITFULL are required to limit SHATTERPROOF expression to a narrow stripe of cells so that the valve margin differentiates precisely at the valve/replum boundary.
The model plants Arabidopsis (Arabidopsis thaliana) and rice (Oryza sativa) have provided a wealth of information about genes and genetic pathways controlling the flowering process, but little is known about the corresponding pathways in legumes. The garden pea (Pisum sativum) has been used for several decades as a model system for physiological genetics of flowering, but the lack of molecular information about pea flowering genes has prevented direct comparison with other systems. To address this problem, we have searched expressed sequence tag and genome sequence databases to identify flowering-gene-related sequences from Medicago truncatula, soybean (Glycine max), and Lotus japonicus, and isolated corresponding sequences from pea by degenerate-primer polymerase chain reaction and library screening. We found that the majority of Arabidopsis flowering genes are represented in pea and in legume sequence databases, although several gene families, including the MADS-box, CONSTANS, and FLOWERING LOCUS T/TERMINAL FLOWER1 families, appear to have undergone differential expansion, and several important Arabidopsis genes, including FRIGIDA and members of the FLOWERING LOCUS C clade, are conspicuously absent. In several cases, pea and Medicago orthologs are shown to map to conserved map positions, emphasizing the closely syntenic relationship between these two species. These results demonstrate the potential benefit of parallel model systems for an understanding of flowering phenology in crop and model legume species.The change from vegetative to reproductive growth is a critical developmental transition in the life of a plant, and the induction, expression, and maintenance of the flowering state are regulated by many external and endogenous factors. A vast number of applied and fundamental studies have demonstrated the importance of light (through daylength and light-quality effects) and temperature (through vernalization and ambient temperature effects) as the main environmental regulators of flowering. However, other factors, including nutrient status, endogenous hormones, stress, and the developmental state of the plant, can also be important. Even with respect to light and temperature, great diversity in responsiveness exists within and between different plant species. These differences are important in the adaptation of species to particular latitudinal and climatic regions, and have also been extremely important for determining the environments and agronomic regimes under which crop species can be most effectively grown.The flowering process has been subject to detailed genetic analysis in Arabidopsis (Arabidopsis thaliana). As a small, weedy annual, Arabidopsis is responsive to a wide range of factors and has been invaluable in outlining the major genetic pathways that are likely to function in the control of flowering responses to photoperiod, vernalization, and hormone responses (Amasino, 2004;Boss et al., 2004;Putterill et al., 2004). It is likely that many of the genetic mechanisms discovered in Arabidopsis ...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.