The first step in flower development is the generation of a floral meristem by the inflorescence meristem. We have analyzed how this process is affected by mutant alleles of the Arabidopsis gene LEAFY. We show that LEAFY interacts with another floral control gene, APETALA1, to promote the transition from inflorescence to floral meristem. We have cloned the LEAFY gene, and, consistent with the mutant phenotype, we find that LEAFY RNA is expressed strongly in young flower primordia. LEAFY expression procedes expression of the homeotic genes AGAMOUS and APETALA3, which specify organ identify within the flower. Furthermore, we demonstrate that LEAFY is the Arabidopsis homolog of the FLORICAULA gene, which controls floral meristem identity in the distantly related species Antirrhinum majus.
In plants, flowering is triggered by endogenous and environmental signals. CONSTANS (CO) promotes flowering of Arabidopsis in response to day length. Four early target genes of CO were identified using a steroid-inducible version of the protein. Two of these genes, SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) and FLOWERING LOCUS T (FT), are required for CO to promote flowering; the others are involved in proline or ethylene biosynthesis. The SOC1 and FT genes are also regulated by a second flowering-time pathway that acts independently of CO. Thus, early target genes of CO define common components of distinct flowering-time pathways.
Abnormal flowers have been recognized for thousands of years, but only in the past decade have the mysteries of flower development begun to unfold. Among these mysteries is the differentiation of four distinct organ types (sepals, petals, stamens and carpels), each of which may be a modified leaf. A landmark accomplishment in plant developmental biology is the ABC model of flower organ identity. This simple model provides a conceptual framework for explaining how the individual and combined activities of the ABC genes produce the four organ types of the typical eudicot flower. Here we show that the activities of the B and C organ-identity genes require the activities of three closely related and functionally redundant MADS-box genes, SEPALLATA1/2/3 (SEP1/2/3). Triple mutant Arabidopsis plants lacking the activity of all three SEP genes produce flowers in which all organs develop as sepals. Thus SEP1/2/3 are a class of organ-identity genes that is required for development of petals, stamens and carpels.
Mutations in the homeotic gene agamous of the plant Arabidopsis cause the transformation of the floral sex organs. Cloning and sequence analysis of agamous suggest that it encodes a protein with a high degree of sequence similarity to the DNA-binding region of transcription factors from yeast and humans and to the product of a homeotic gene from Antirrhinum. The agamous gene therefore probably encodes a transcription factor that regulates genes determining stamen and carpel development in wild-type flowers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.