In recent years, Carbon Capture and Storage (Sequestration) (CCS) has been proposed as a potential method to allow the continued use of fossil-fuelled power stations whilst preventing emissions of CO 2 from reaching the atmosphere. Gas, coal (and biomass)-fired power stations can respond to changes in demand more readily than many other sources of electricity production, hence the importance of retaining them as an option in the energy mix. Here, we review the leading CO 2 capture technologies, available in the short and long term, and their technological maturity, before discussing CO 2 transport and storage. Current pilot plants and demonstrations are highlighted, as is the importance of optimising the CCS system as a whole. Other topics briefly discussed include the viability of both the capture of CO 2 from the air and CO 2 reutilisation as climate change mitigation strategies. Finally, we discuss the economic and legal aspects of CCS.
α-Synuclein (α-Syn) is a key protein that accumulates as hyperphosphorylated aggregates in pathologic hallmark features of Parkinson’s disease (PD) and other neurodegenerative disorders. Phosphorylation of this protein at serine 129 is believed to promote its aggregation and neurotoxicity suggesting that this post-translational modification could be a therapeutic target. Here, we demonstrate that protein phosphatase 2A (PP2A) dephosphorylates α-Syn at serine 129, and that this activity is greatly enhanced by carboxyl methylation of the catalytic C subunit of PP2A. α-Syn transgenic mice raised on a diet supplemented with eicosinoyl-5-hydroxytryptamide (EHT), an agent that enhances PP2A methylation, dramatically reduced both α-Syn phosphorylation at Serine 129 and α-Syn aggregation in the brain. These biochemical changes were associated with enhanced neuronal activity, increased dendritic arborizations, reduced astroglial and microglial activation, as well as improved motor performance. These findings support the notion that serine 129 phosphorylation of α-Syn is of pathogenetic significance, and that promoting PP2A activity is a viable disease modifying therapeutic strategy for α-synucleinopathies such as PD.
a b s t r a c tThis work presents a conceptual design of a novel method to obtain hydrogen and/or electricity from natural gas and a concentrated stream of CO 2 suitable for permanent geological storage. The method is based on the well known Sorption Enhanced Reforming (SER) principles for H 2 production using a CaO/CaCO 3 chemical loop. A second chemical loop of Cu/CuO is employed to solve the problem of endothermic CaCO 3 calcination in order to regenerate the sorbent and release the concentrated CO 2 . The reduction reaction of CuO with natural gas, CO or H 2 is shown to be feasible for providing the necessary heat for calcination. A preliminary design of the process has been carried out based on the principles of fixed bed operation and high temperature PSA, making use of the information offered by the literature to define the operating best conditions for the key gas-solid reaction steps and assuming ideal plug flow behaviour in all the reactors during the chemical reactions and gas-solid heat transfer. This makes it possible to define the precise operating windows for the process, so that the reactors can operate close to neutrally thermal conditions. Special material properties (particularly the Ca/inert and Cu/inert ratios) are required, but these are shown to be within the limits of what have been reported in the literature for other gas/solid reaction processes using the same reactions. The conclusion is that there is a great potential for achieving a high degree of energy efficiency with the proposed process by means of a sequence of reactions under the conditions described in this work.
This paper presents a new solids looping process for capturing CO2 while generating hydrogen and/or electricity from natural gas. The process is based on the sorption enhanced reforming of CH4, employing CaO as a high temperature CO2 sorbent, combined with a second chemical loop of CuO/Cu. The exothermic reduction of CuO with CH4 is used to obtain the heat necessary for the decomposition of the CaCO3 formed in the reforming step. The main part of the process is completed by the oxidation of Cu to CuO, which is carried out with air diluted with a product gas recycle of this reactor at sufficiently low temperatures and high pressures to avoid the decomposition of a substantial fraction of CaCO3.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.