Little information exists in humans on the regulation that oxidized low-density lipoprotein (oxLDL) exerts on adipocyte metabolism, which is associated with obesity and type 2 diabetes. The aim was to analyze the oxLDL effects on adipocytokine secretion and scavenger receptors (SRs) and cell death markers in human visceral adipocytes. Human differentiated adipocytes from visceral adipose tissue from non-obese and morbidly obese subjects were incubated with increasing oxLDL concentrations. mRNA expression of SRs, markers of apoptosis and autophagy, secretion of adipocytokines, and glucose uptake were analyzed. In non-obese and in morbidly obese subjects, oxLDL produced a decrease in insulin-induced glucose uptake, a significant dose-dependent increase in tumor necrosis factor-α (TNF-α), IL-6, and adiponectin secretion, and a decrease in leptin secretion. OxLDL produced a significant increase of Lox-1 and a decrease in Cxcl16 and Cl-p1 expression. The expression of Bnip3 (marker of apoptosis, necrosis and autophagy) was significantly increased and Bcl2 (antiapoptotic marker) was decreased. OxLDL could sensitize adipocytes to a lower insulin-induced glucose uptake, a more proinflammatory phenotype, and could modify the gene expression involved in apoptosis, autophagy, necrosis, and mitophagy. OxLDL can upregulate Lox-1, and this could lead to a possible amplification of proinflammatory and proapoptotic effects of oxLDL.
Background: Little is known about the effects of hypoxia on scavenger receptors (SRs) levels in adipocytes. We analyzed the effect of morbid obesity and hypoxia on SRs and inflammation markers in human visceral adipocytes and whether ox-LDL modify the inflammatory profile produced by hypoxia. Methods: We studied in 17 non-obese and 20 subjects with morbid obesity (MO) the mRNA expression of HIF-1α, SRs (LOX-1, MSR1, CL-P1 and CXCL16), IL6 and TNFα in visceral adipocytes and the effect of hypoxia with or without ox-LDL on visceral in vitro-differentiated adipocytes (VDA). Results: HIF-1α, TNFα, IL6, LOX-1, MSR1 and CXCL16 expression in adipocytes was increased in MO when compared with those in non-obese subjects (p < 0.05). The expression of most of the inflammatory markers and SRs gene correlated with HIF-1α. In VDA, hypoxia increased TNFα, IL6, MSR1, CXCL16 and CL-P1 (p < 0.05) in non-obese subjects, and TNFα, IL6, MSR1 and CXCL16 (p < 0.05) in MO. Silencing HIF-1α prevented the increase of TNFα, IL6, LOX-1, MSR1, CL-P1 and CXCL16 expression (p < 0.05). The combination of hypoxia and ox-LDL produced higher TNFα expression (p = 0.041). Conclusions: Morbid obesity and hypoxia increased SRs and inflammatory markers in visceral adipocytes. In a hypoxic state, ox-LDL increased the proinflammatory response of visceral adipocytes to hypoxia.
GHRH and GHRH-R are expressed in human adipocytes and are negatively associated. GHRH at low doses may exert an anti-obesity effect by inhibiting HMSC differentiation in adipocytes and by increasing adipocyte lipolysis in an autocrine or paracrine pathway. These effects are mediated by GH and GH-R.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.