A new hydrogel based on two natural polysaccharides was prepared in aqueous medium with 1.7% (w/v) galactomannan (from Cassia grandis seeds) and different concentrations of κ-carrageenan (0.3, 0.4 and 0.5%w/v), CaCl2 (0.0, 0.1 and 0.2M) and pH (5.0, 5.5 and 6.0), using a full factorial design based on rheological parameters. The best formulation was obtained with 1.7% (w/v) galactomannan and 0.5% (w/v) κ-carrageenan, containing 0.2M CaCl2 at pH 5.0. Nuclear magnetic resonance and scanning electron microscopy where used in order to characterize the hydrogel formulation. A shelf life study was carried out with this formulation along 90 days-period of storage at 4 °C, evaluating pH, color, microbial contamination and rheology. This hydrogel showed no significant changes in pH, no microbial contamination and became more translucent along the aging. Analyses by nuclear magnetic resonance and rheology showed a larger organization of the polysaccharides in the hydrogel matrix. The results demonstrated that this hydrogel was stable with possible applications in medical and cosmetic fields.
Here we have proposed to evaluate potential replacers of fat in sponge cake formulations. Our investigation consisted initially of monitoring the physical-chemical changes in sponge cake batters caused by gradually replacing the vegetable fat/margarine of a control sample (standard sponge cake recipe) with galactomannan extracted from the seeds of Cassia grandis. Several samples were prepared where a 100% concentration of vegetable fat was substituted with galactomannan in different concentrations. We then compared both microscopic and macroscopic characteristics of pure fat cake batter formulations and formulations with controlled fat/galactomannan mixtures. At this first stage, rheometry and optical microscopy were employed to characterize the rheological features and air bubble distribution in the batters. In the second stage, the effects of fat substitution with galactomannan, now for the final baked cakes, were also monitored. Scanning electron microscopy (SEM) and standard sensorial tests were performed in order to correlate the final color, texture, and taste characteristics of the final sponge cake and those characteristics obtained initially for the batter. According to the statistical analysis of the data, a 75% fat replacement with galactomannan at only 1.0% concentration was achieved, while successfully maintaining surface microstructure, sensory acceptance, and rheological behavior similar to the original formulation containing only fat. Regarding vegetable fat substitution with galactomannan, our results allow us to conclude that rheometry and bubble distribution tests on the initial batters are useful indicators of the final cake quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.