En este artículo se presenta el diseño e implementación de una plataforma virtual, que permite la simulación y mando local y remoto del brazo robot tipo SCARA llamado UV-CERMA, presente en el Laboratorio de Robótica de la Escuela de Ingeniería Eléctrica y Electrónica de la Facultad de Ingeniería de la Universidad del Valle, el robot UV-CERMA ha estado subutilizado desde hace algunos años debido a lo obsoleto de su sistema de control. La plataforma, enfocada con los lineamientos de educación en ingeniería está compuesta por dos aplicaciones que permiten la simulación y el mando y control locales y remotos para el robot, una de las aplicaciones se programó haciendo uso del paquete de National Instruments LabVIEW y la otra aplicación se realizó por medio de software libre, por medio del lenguaje de código abierto Java, ambos desarrollos implementan los modelos cinemático directo y cinemático inverso, un módulo para la planificación y ejecución de trayectorias, otro módulo para el monitoreo de variables y un modelo 3D del robot. Para la manipulación del robot se tiene una interfaz con un joystick, que lo hace más versátil. Las aplicaciones se comunican al robot real mediante una tarjeta de adquisición de datos de National Instruments NI USB-6211, y para el mando remoto la plataforma cuenta con una arquitectura cliente/servidor usando sockets TCP/IP.
Context: Current smartphone models have a very interesting set of sensors such as cameras, IMUs, GPS, and environmental variables. This combination of sensors motivates the use of smartphones in scientific and service applications. One of these applications is precision agriculture, specifically drone position estimation using computer vision in GPS-denied environments for remote crop measurements. Method: This work presents the development of EVP, a vision-based position estimation system using a modern smartphone and computer vision methods. EVP consists of two software applications: an Android app (mobile station) running on a smartphone capable of controlling the drone’s flight, acquiring images, and transmitting them through a wireless network; and another application (base station) running on a Linux-based computer capable of receiving the images, processing them and running the position estimation algorithms using the acquired images. In this work, the mobile station is placed in a quadcopter. Using EVP, users can configure the mobile and base station software, execute the vision-based position estimation method, observe position graph results on the base station, and store sensor data in a database. Results: EVP was tested in three field tests: an indoor environment, an open field flight, and a field test over the Engineering Department’s square at Universidad del Valle. The root mean square errors obtained in XY were 0,166 m, 2,8 m, and 1,4 m, respectively, and they were compared against the GPS-RTK measurements. Conclusions: As a result, a vision-based position estimation system called EVP was developed and tested in realworld experiments. This system can be used in GPS-denied environments to perform tasks such as 3D mapping, pick-up and delivery of goods, object tracking, among others.
RESUMENEn este artículo se presenta el modelo virtual de una plataforma subacuática móvil inspirada en biomimetismo seleccionando como sistema de locomoción el modo de un pez subcarangiforme, el que se basa en las aletas caudal y de cuerpo (BCF Body and Caudal Fins) para su propulsión. Este modo utiliza las dos terceras partes del cuerpo para generar el empuje y se caracteriza por ser un modo de alta maniobrabilidad. Para el desarrollo del modelo se llevó a cabo un modelamiento del prototipo en 3D utilizando un software de diseño asistido por computador (CAD), un análisis considerando la cinemática directa e inversa y un sistema de control para la navegación implementando la lógica difusa. En este modelo se desarrolló un algoritmo basado en métodos geométricos para dar solución a la cinemática inversa considerando el área de trabajo de la plataforma y dividiéndola por subáreas y así poder llevar a cabo un análisis de posición, velocidad, aceleración y torque de cada articulación del pez robótico. También se desarrolló un algoritmo de navegación utilizando la lógica difusa como método de control no lineal. Los resultados obtenidos representan una aproximación del comportamiento de los peces modo subcarangiforme que son de gran interés para el futuro desarrollo e implementación de una plataforma subacuática física inspirada en biomimetismo. ABSTRACT This paper presents the model of a virtual drive system of an underwater mobile platform inspired by biomimicry, selecting the subcarangiform mode of fishes as locomotion system which is based on body and caudal fins (BCF). This model uses two-thirds of the body for thrust and one of the most important features is the high maneuverability.The development of the model is based on simulation by designing the 3D model of the prototype using a computer aided design software (CAD), an analysis by considering the direct and inverse kinematics and a navigation control system by implementing the fuzzy logic. The algorithm implemented to solve the inverse kinematics is based on geometric methods considering the workspace and dividing it into subareas in order to analyze position, velocity, acceleration and torque for every joint of the robot fish. Also, a navigation control algorithm was developed using the fuzzy logic as non-linear control method. The results represent an approximation of subacarangiform mode of fish behaviours for future physical implementation of an underwater platform inspired by biomimicry.
This article presents the development of a support tool for human gait therapy and diagnosis. This system is made of an electric treadmill with horizontally parallel graduable support bars and a positioning control system of a patient during forward gait. The control objective consists in keeping the patient around the center of the treadmill, with a spontanous gait speed of the subject as the main disturbance. Actuation on the speed reference of the treadmill is made using a modification on the manual speed controls included in the commercial treadmill used. A Kinect sensor is used for measuring the position of the patient on the treadmill. Successful results of implementation and basic operation of the whole system are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.