RESUMENEn este artículo se presenta el modelo virtual de una plataforma subacuática móvil inspirada en biomimetismo seleccionando como sistema de locomoción el modo de un pez subcarangiforme, el que se basa en las aletas caudal y de cuerpo (BCF Body and Caudal Fins) para su propulsión. Este modo utiliza las dos terceras partes del cuerpo para generar el empuje y se caracteriza por ser un modo de alta maniobrabilidad. Para el desarrollo del modelo se llevó a cabo un modelamiento del prototipo en 3D utilizando un software de diseño asistido por computador (CAD), un análisis considerando la cinemática directa e inversa y un sistema de control para la navegación implementando la lógica difusa. En este modelo se desarrolló un algoritmo basado en métodos geométricos para dar solución a la cinemática inversa considerando el área de trabajo de la plataforma y dividiéndola por subáreas y así poder llevar a cabo un análisis de posición, velocidad, aceleración y torque de cada articulación del pez robótico. También se desarrolló un algoritmo de navegación utilizando la lógica difusa como método de control no lineal. Los resultados obtenidos representan una aproximación del comportamiento de los peces modo subcarangiforme que son de gran interés para el futuro desarrollo e implementación de una plataforma subacuática física inspirada en biomimetismo. ABSTRACT This paper presents the model of a virtual drive system of an underwater mobile platform inspired by biomimicry, selecting the subcarangiform mode of fishes as locomotion system which is based on body and caudal fins (BCF). This model uses two-thirds of the body for thrust and one of the most important features is the high maneuverability.The development of the model is based on simulation by designing the 3D model of the prototype using a computer aided design software (CAD), an analysis by considering the direct and inverse kinematics and a navigation control system by implementing the fuzzy logic. The algorithm implemented to solve the inverse kinematics is based on geometric methods considering the workspace and dividing it into subareas in order to analyze position, velocity, acceleration and torque for every joint of the robot fish. Also, a navigation control algorithm was developed using the fuzzy logic as non-linear control method. The results represent an approximation of subacarangiform mode of fish behaviours for future physical implementation of an underwater platform inspired by biomimicry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.