Nowadays, energy generation systems that include renewable energies, substations, distribution, transmission, control, measurement, and storage applications, among others, and are interrelated are known as Smart Grids. All these techniques and technologies involve extensive research and development, which allows for the solving of key aspects, such as control, diagnosis, and fault recovery, as well as communication systems focused directly on the operation of the electrical networks. Due to the relevance of knowledge concerning developments in these areas of Smart Grids, this paper presents a review of the research related to the control systems applied to Smart Grids and Micro Grids, both in supply and demand. Likewise, some control models relate to different processes, with a special focus on techniques related to Petri nets. The paper shows, among other outcomes, the advances in the control of smart grids, the types of generation and their influence on the design of transmission lines, integrated circuits applied based on sensors, communication technologies, and automation schemes in all levels of the electrical network. Finally, patents from 1950 to 2019 related to Smart Grid in energy systems are traced and presented.
Metering of bitumen produced by Steam-Assisted Gravity Drainage (SAGD) induces many issues arising from high operating temperatures (150–200 C), steam presence in the gas phase, foaming, emulsion and small density differences between bitumen and produced water. Nucleonic technology could be well-suited for this environment especially if the temperature issue can be properly handled. A multiphase meter (MFM) utilizing a multi-energy gamma ray (nuclear fraction) meter associated with a Venturi can potentially handle these operating constraints and replace separation devices for permanent or periodic well testing, providing accurate monitoring and optimization of oil, water, gas and steam production. Following a 2008 field trial planned at a Canadian SAGD site, this paper will present specific strengths of the MFM with emphasis on its ability to meter correctly the liquid/gas phases depending of the calibration method and operating measurement range. Indeed, the overall methodology is a key element of the utilization of the MFM to ensure consistency with metering figures from well tests performed with a test separator equipped with accurate liquid and gas measurements and this field trial explores variations in process conditions to identify strengths and weaknesses of this MFM technology versus the operating envelope in standard operation (Non SAGD). An entire study of the main parameters which could influence the measurement associated with this technology will be provided based on practical and simulated data and the impact of changes in each parameter will be evaluated. This paper will be a guideline for future users in the oil industry of this technology by providing an understanding of how to apply it to bitumen metering. Introduction: Multiphase flow meters (MFM) are more and more selected in Oil and Gas developments not only in production but also in periodic well testing, replacing test separators technology. The Heavy Oil business has been left more or less without large focus on research and development for MFM technology. This leads today, on the market, to few multiphase flow meters capable to handle this viscous fluid in cold production and high temperature fluids in thermal production. This statement was well documented previous SPE paper (Ref [1]).
Digital Transformation is a concept that is part of Industry 4.0 and consists of adapting the organization to new information technologies, affecting all areas, encouraging them to be more interconnected with their customers. For higher education institutions it is known as University 4.1 to name the automation of both management and training processes. The following article aims to show a matrix methodology to establish strategies that will allow the corporate digital transformation to evolve. The article shows a case study where the matrix methodology was implemented, obtaining quantifiable variables that serve as the basis for the digital transformation of the San José Higher Education Foundation in Colombia as a second phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.