We introduce a parsimonious, flexible subclass of the closed-skew normal (CSN) distribution that produces valid stationary spatial models. We derive and prove some relevant properties for this subfamily; in particular, we show that it is identifiable, closed under marginalization and conditioning and that a null correlation implies independence. Based on the subclass, we propose a discrete spatial model and its continuous version. We discuss why these random fields constitute valid models, and additionally, we discuss least-squares estimators for the models under the subclass. We propose to perform predictions on the model using the profile predictive likelihood; we discuss how to construct prediction regions and intervals. To compare the model against its Gaussian counterpart and show that the numerical likelihood estimators are well-behaved, we present a simulation study. Finally, we use the model to study a heuristic COVID-19 mortality risk index; we evaluate the model’s performance through 10-fold cross-validation. The risk index model is compared with a baseline Gaussian model.
The discriminative and predictive power of a continuous-valued marker for survival outcomes can be summarized using the receiver operating characteristic and predictiveness curves, respectively. In this paper, fully parametric and semi-parametric copula-based constructions of the joint model of the marker and the survival time are developed for characterizing, plotting, and analyzing both curves along with other underlying performance measures. The formulations require a copula function, a parametric specification for the margin of the marker, and either a parametric distribution or a non-parametric estimator for the margin of the time to event, to respectively characterize the fully parametric and semi-parametric joint models. Estimation is carried out using maximum likelihood and a two-stage procedure for the parametric and semi-parametric models, respectively. Resampling-based methods are used for computing standard errors and confidence bounds for the various parameters, curves, and associated measures. Graphical inspection of residuals from each conditional distribution is employed as a guide for choosing a copula from a set of candidates. The performance of the estimators of various classification and predictiveness measures is assessed in simulation studies, assuming different copula and censoring scenarios. The methods are illustrated with the analysis of two markers using the familiar primary biliary cirrhosis data set.
In this work, we propose a spatio-temporal Markovian-like model for ordinal observations to predict in time the spread of disease in a discrete rectangular grid of plants. This model is constructed from a logistic distribution and some simple assumptions that reflect the conditions present in a series of studies carried out to understand the dissemination of a particular infection in plants. After constructing the model, we establish conditions for the existence and uniqueness of the maximum likelihood estimator (MLE) of the model parameters. In addition, we show that, under further restrictions based on Partially Ordered Markov Models (POMMs), the MLE of the model is consistent and normally asymptotic. We then employ the MLE’s asymptotic normality to propose methods for testing spatio-temporal and spatial dependencies. The model is estimated from the real data on plants that inspired the model, and we used its results to construct prediction maps to better understand the transmission of plant illness in time and space.
Due to their practicality and convenient parametrization, fractals derived from iterated function systems (IFSs) constitute powerful tools widely used to model natural and synthetic shapes. An IFS can generate sets other than fractals, extending its application field. Some of such sets arise from IFS fractals by adding minimal modifications to their defining rule. In this work, we propose two modifications to a fractal recently introduced by the authors: the so-called 2-ball fractal dust, which consists of a set of balls diminishing in size along an iterative process and delimited by an enclosing square. The proposed modifications are (a) adding a resizer parameter to introduce an interaction between the generator and generated ball elements and (b) a new fractal embedded into the 2-ball fractal dust, having the characteristic of filling zones not covered by the previous one. We study some numerical properties of both modified resulting sets to gain insights into their general properties. The resulting sets are geometrical forms with potential applications. Notably, the first modification generates an algorithm capable of producing geometric structures similar to those in mandalas and succulent plants; the second modification produces shapes similar to those found in nature, such as bubbles, sponges, and soil. Then, although a direct application of our findings is beyond the scope of this research, we discuss some clues of possible uses and extensions among which we can remark two connections: the first one between the parametrization we propose and the mandala patterns, and the second one between the embedded fractal and the grain size distribution of rocks, which is useful in percolation modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.