Photodynamic therapy (PDT) mediated by Fotoenticine® (FTC), a new photosensitizer derived from chlorin e-6, has shown in vitro inhibitory activity against the cariogenic bacterium Streptococcus mutans. However, its antimicrobial effects must be investigated on biofilm models that represent the microbial complexity of caries. Thus, we evaluated the efficacy of FTC-mediated PDT on microcosm biofilms of dental caries. Decayed dentin samples were collected from different patients to form in vitro biofilms. Biofilms were treated with FTC associated with LED irradiation and analyzed by counting the colony forming units (log10 CFU) in selective and non-selective culture media. Furthermore, the biofilm structure and acid production by microorganisms were analyzed using microscopic and spectrophotometric analysis, respectively. The biofilms from different patients showed variations in microbial composition, being formed by streptococci, lactobacilli and yeasts. Altogether, PDT decreased up to 3.7 log10 CFU of total microorganisms, 2.8 log10 CFU of streptococci, 3.2 log10 CFU of lactobacilli and 3.2 log10 CFU of yeasts, and reached eradication of mutans streptococci. PDT was also capable of disaggregating the biofilms and reducing acid concentration in 1.1 to 1.9 mmol lactate/L. It was concluded that FTC was effective in PDT against the heterogeneous biofilms of dental caries.
The diamond coating of tungsten carbide (WC)–cobalt (Co) hard metals has been the focus of various research activities mainly due to growing interest in diamond-coated tools for industrial machining of different materials. In this work, multilayered diamond coatings have been grown on pretreated tungsten carbide–cobalt substrates by hot-filament chemical vapor deposition. Two types of multilayer coatings have been prepared: (a) three-layer (alternating nanocrystalline diamond and microcrystalline diamond films) and (b) five-layer (alternating ultrananocrystalline and microcrystalline diamond films). The morphology, roughness, structure, thickness, adhesion of these coatings have been investigated using atomic force microscopy, field emission gun scanning electron microscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, nanoindentantion and Rockwell C indentation tests at 600 N load. Raman spectra of the two types of samples exhibited sharp characteristic bands of nanocrystalline diamond and a centered peak at 1340 cm−1. The displacement of this peak in relation to the natural diamond peak (1332 cm−1) can be attributed to graphitic inclusions in diamond grain boundaries and the thermal coefficient mismatch of the multilayer coating–substrate system. Roughness surface measurements showed very smooth surfaces for both samples. Although the substrate has a high binder content, the results show that well-adhered chemical vapor deposition diamond multilayer coatings were produced.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.