Purpose: To assess how the current practice of newborn screening (NBS) for homocystinurias compares with published recommendations. Methods: Twenty-two of 32 NBS programmes from 18 countries screened for at least one form of homocystinuria. Centres provided pseudonymised NBS data from patients with cystathionine beta-synthase deficiency (CBSD, n = 19), methionine adenosyltransferase I/III deficiency (MATI/IIID, n = 28), combined remethylation disorder (cRMD, n = 56) and isolated remethylation disorder (iRMD), including methylenetetrahydrofolate reductase deficiency (MTHFRD) (n = 8). Markers and decision limits were converted to multiples of the median (MoM) to allow comparison between centres.
Primary renal hypouricemia is a genetic disorder characterized by defective renal uric acid (UA) reabsorption with complications such as nephrolithiasis and exercise-induced acute renal failure. The known causes are: defects in the SLC22A12 gene, encoding the human urate transporter 1 (hURAT1), and also impairment of voltage urate transporter (URATv1), encoded by SLC2A9 (GLUT9) gene. Diagnosis is based on hypouricemia (<119 μmol/L) and increased fractional excretion of UA (>10%). To date, the cases with mutations in hURAT1 gene have been reported in East Asia only. More than 100 Japanese patients have been described. Hypouricemia is sometimes overlooked; therefore, we have set up the flowchart for this disorder. The patients were selected for molecular analysis from 620 Czech hypouricemic patients. Secondary causes of hyperuricosuric hypouricemia were excluded. The estimations of (1) serum UA, (2) excretion fraction of UA, and (3) analysis of hURAT1 and URATv1 genes follow. Three transitions and one deletion (four times) in SLC22A12 gene and one nucleotide insertion in SLC2A9 gene in seven Czech patients were found. Three patients had acute renal failure and urate nephrolithiasis. In addition, five nonsynonymous sequence variants and three nonsynonymous sequence variants in SLC2A9 gene were found in two UK patients suffering from acute renal failure. Our finding of the defects in SLC22A12 and SLC2A9 genes gives further evidence of the causative genes of primary renal hypouricemia and supports their important role in regulation of serum urate levels in humans.
Hereditary xanthinuria (HX) is a rare inherited disorder caused by a deficiency of xanthine dehydrogenase/oxidase (XDH/XO). Missing XDH/XO activity leads to undetectable levels of uric acid excessively replaced by xanthine in serum/urine. The allopurinol loading test has been traditionally used to differentiate between HX types I and II. Final confirmation of HX has been based on the biopsy finding of the absent XDH/XO activity in the small intestine or liver. We present the clinical, biochemical, ultrasound and molecular genetics findings in three new patients with HX and suggest a simple three-step approach to be used for diagnosis, typing and confirmation of HX. In the first step, the diagnosis of HX is determined by extremely low serum/urinary uric acid excessively replaced by xanthine. Second, HX is typed using urinary metabolomics. Finally, the results are confirmed by molecular genetics. We advocate for this safe and non-invasive diagnostic algorithm instead of the traditional allopurinol loading test and intestinal or liver biopsy used in the past.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.