ObjectiveUsing European descent Czech populations, we performed a study of SLC2A9 and SLC22A12 genes previously identified as being associated with serum uric acid concentrations and gout. This is the first study of the impact of non-synonymous allelic variants on the function of GLUT9 except for patients suffering from renal hypouricemia type 2.MethodsThe cohort consisted of 250 individuals (150 controls, 54 nonspecific hyperuricemics and 46 primary gout and/or hyperuricemia subjects). We analyzed 13 exons of SLC2A9 (GLUT9 variant 1 and GLUT9 variant 2) and 10 exons of SLC22A12 by PCR amplification and sequenced directly. Allelic variants were prepared and their urate uptake and subcellular localization were studied by Xenopus oocytes expression system. The functional studies were analyzed using the non-parametric Wilcoxon and Kruskall-Wallis tests; the association study used the Fisher exact test and linear regression approach.ResultsWe identified a total of 52 sequence variants (12 unpublished). Eight non-synonymous allelic variants were found only in SLC2A9: rs6820230, rs2276961, rs144196049, rs112404957, rs73225891, rs16890979, rs3733591 and rs2280205. None of these variants showed any significant difference in the expression of GLUT9 and in urate transport. In the association study, eight variants showed a possible association with hyperuricemia. However, seven of these were in introns and the one exon located variant, rs7932775, did not show a statistically significant association with serum uric acid concentration.ConclusionOur results did not confirm any effect of SLC22A12 and SLC2A9 variants on serum uric acid concentration. Our complex approach using association analysis together with functional and immunohistochemical characterization of non-synonymous allelic variants did not show any influence on expression, subcellular localization and urate uptake of GLUT9.
This is the first complex function characterization of non-synonymous allelic variants in patients with renal hypouricemia regarding both GLUT9 isoforms. Our finding of defects in the SLC2A9 and SLC22A12 genes show the following: renal hypouricemia is not restricted to East Asia populations; urate uptake of GLUT9 variants prepared for both isoforms were not significantly different; renal hypouricemia type 2 has more wide clinical variability than type 1; the phenotypic severity of renal hypouricemia is not correlated with results of functional characterizations of URAT1 and GLUT9 variants.
Hereditary xanthinuria (HX) is a rare inherited disorder caused by a deficiency of xanthine dehydrogenase/oxidase (XDH/XO). Missing XDH/XO activity leads to undetectable levels of uric acid excessively replaced by xanthine in serum/urine. The allopurinol loading test has been traditionally used to differentiate between HX types I and II. Final confirmation of HX has been based on the biopsy finding of the absent XDH/XO activity in the small intestine or liver. We present the clinical, biochemical, ultrasound and molecular genetics findings in three new patients with HX and suggest a simple three-step approach to be used for diagnosis, typing and confirmation of HX. In the first step, the diagnosis of HX is determined by extremely low serum/urinary uric acid excessively replaced by xanthine. Second, HX is typed using urinary metabolomics. Finally, the results are confirmed by molecular genetics. We advocate for this safe and non-invasive diagnostic algorithm instead of the traditional allopurinol loading test and intestinal or liver biopsy used in the past.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.