Neural stem cells in various regions of the vertebrate brain continuously generate neurons throughout life. In the mammalian hippocampus, a region important for spatial and episodic memory, thousands of new granule cells are produced per day, with the exact number depending on environmental conditions and physical exercise. The survival of these neurons is improved by learning and conversely learning may be promoted by neurogenesis. Although it has been suggested that newly generated neurons may have specific properties to facilitate learning, the cellular and synaptic mechanisms of plasticity in these neurons are largely unknown. Here we show that young granule cells in the adult hippocampus differ substantially from mature granule cells in both active and passive membrane properties. In young neurons, T-type Ca2+ channels can generate isolated Ca2+ spikes and boost fast Na+ action potentials, contributing to the induction of synaptic plasticity. Associative long-term potentiation can be induced more easily in young neurons than in mature neurons under identical conditions. Thus, newly generated neurons express unique mechanisms to facilitate synaptic plasticity, which may be important for the formation of new memories.
It is widely accepted that individual neurons in the central nervous system release only a single fast transmitter. The possibility of corelease of fast neurotransmitters was examined by making paired recordings from synaptically connected neurons in spinal cord slices. Unitary inhibitory postsynaptic currents generated at interneuron-motoneuron synapses consisted of a strychnine-sensitive, glycine receptor-mediated component and a bicuculline-sensitive, gamma-aminobutyric acid (GABA)A receptor-mediated component. These results indicate that spinal interneurons release both glycine and GABA to activate functionally distinct receptors in their postsynaptic target cells. A subset of miniature synaptic currents also showed both components, consistent with corelease from individual synaptic vesicles.
Large-conductance calcium- and voltage-activated potassium channels (BKCa) are dually activated by membrane depolarization and elevation of cytosolic calcium ions (Ca2+). Under normal cellular conditions, BKCa channel activation requires Ca2+ concentrations that typically occur in close proximity to Ca2+ sources. We show that BKCa channels affinity-purified from rat brain are assembled into macromolecular complexes with the voltage-gated calcium channels Cav1.2 (L-type), Cav2.1 (P/Q-type), and Cav2.2 (N-type). Heterologously expressed BKCa-Cav complexes reconstitute a functional "Ca2+ nanodomain" where Ca2+ influx through the Cav channel activates BKCa in the physiological voltage range with submillisecond kinetics. Complex formation with distinct Cav channels enables BKCa-mediated membrane hyperpolarization that controls neuronal firing pattern and release of hormones and transmitters in the central nervous system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.