Background Many radiographic lower limb alignment measurements are dependent on patients’ position, which makes a standardised image acquisition of long-leg radiographs (LLRs) essential for valid measurements. The purpose of this study was to investigate the influence of rotation and flexion of the lower limb on common radiological alignment parameters using three-dimensional (3D) simulation. Methods Joint angles and alignment parameters of 3D lower limb bone models (n = 60), generated from computed tomography (CT) scans, were assessed and projected into the coronal plane to mimic radiographic imaging. Bone models were subsequently rotated around the longitudinal mechanical axis up to 15° inward/outward and additionally flexed along the femoral intercondylar axis up to 30°. This resulted in 28 combinations of rotation and flexion for each leg. The results were statistically analysed on a descriptive level and using a linear mixed effects model. Results A total of 1680 simulations were performed. Mechanical axis deviation (MAD) revealed a medial deviation with increasing internal rotation and a lateral deviation with increasing external rotation. This effect increased significantly (p < 0.05) with combined flexion up to 30° flexion (− 25.4 mm to 25.2 mm). With the knee extended, the mean deviation of hip–knee–ankle angle (HKA) was small over all rotational steps but increased toward more varus/valgus when combined with flexion (8.4° to − 8.5°). Rotation alone changed the medial proximal tibial angle (MPTA) and the mechanical lateral distal femoral angle (mLDFA) in opposite directions, and the effects increased significantly (p < 0.05) when flexion was present. Conclusions Axial rotation and flexion of the 3D lower limb has a huge impact on the projected two-dimensional alignment measurements in the coronal plane. The observed effects were small for isolated rotation or flexion, but became pronounced and clinically relevant when there was a combination of both. This must be considered when evaluating X-ray images. Extension deficits of the knee make LLR prone to error and this calls into question direct postoperative alignment controls. Level of evidence III (retrospective cohort study).
Purpose The purpose of this study was to quantify changes in rotation of the lower limb between image pairs based on patellar position. Additionally, we investigated the differences in alignment between centralized patellar and orthograde-positioned condyles. Methods Three-dimensional models of 30 paired legs were aligned in neutral position with condyles orthogonal to the sagittal axis and then rotated internally and externally in 1° increments up to 15°. For each rotation, the deviation of the patella and the subsequent changes in alignment parameters were calculated and plotted using a linear regression model. Differences between neutral position and patellar centralization were analysed qualitatively. Results A linear relationship between lower limb rotation and patellar position can be postulated. The regression model (R2 = 0.99) calculated a change of the patellar position of − 0.9 mm per degree rotation and alignment parameters showed small changes due to rotation. The physiological lateralization of the patella at neutral position was on average − 8.3 mm (SD: ± 5.4 mm). From neutral position, internal rotation that led to a centralized patella was on average − 9.8° (SD: ± 5.2°). Conclusion The approximately linear dependence of the patellar position on rotation allows an inverse estimation of the rotation during image acquisition and its influence on the alignment parameters. As there is still no absolute consensus about lower limb positioning during image acquisition, data about the impact of a centralized patella compared to an orthograde condyle positioning on alignment parameters was provided. Level of evidence IV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.