Continuous high-speed water jets are presently used in many industrial applications such as cutting of various materials, cleaning and removal of surface layers. However, there is still a need for further research to enhance the performance of pure water jets. An obvious method is to generate water jets at ultra-high pressures (currently up to 700 MPa). An alternate approach is to eliminate the need for such high pressures by pulsing of the jet. This follows from the fact that the impact pressure on a target generated by a slug of water is considerably higher than the stagnation pressure of a corresponding continuous jet. Ultrasonically forced modulation of a continuous stream of water represents the most promising method of pulsed jet generation because of its simplicity and practicality. A pulsed jet is generated by modulating a continuous stream of water by ultrasonic waves. A velocity transformer connected to a piezoelectric transducer is located axially inside a nozzle to induce longitudinal pulsations in the water. An extensive laboratory research program is in progress to understand the basic principles of the process and to optimize the nozzle design for several applications. The results reported in this paper show that the performance of such a pulsed jet is far superior to that of a continuous jet operating at the same parameters. Experimental results obtained with the ultrasonic vibration of a tip situated inside the nozzle indicate that using this technique one can achieve performance of the jet even order of magnitude higher in comparison to continuous jet at the same hydraulic parameters. Performance of ultrasonically modulated jets in cutting of various materials was tested in laboratory conditions. In this paper, results of measurement of dynamic pressure in the nozzle and force effects of modulated jets are presented together with results obtained in cutting of various materials using ultrasonically modulated water jets. The results are compared with those obtained with continuous jets at the same operating parameters. Potential of forced modulation of the jet in applications of cleaning, paint and coating removal from surfaces and concrete cutting in the process of repair of concrete structures is mentioned.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.