Wound repair is a quiescent mechanism to restore barriers in multicellular organisms upon injury. In chronic wounds, however, this program prematurely stalls. It is known that patterns of extracellular signals within the wound fluid are crucial to healing. Extracellular pH (pHe) is precisely regulated and potentially important in signaling within wounds due to its diverse cellular effects. Additionally, sufficient oxygenation is a prerequisite for cell proliferation and protein synthesis during tissue repair. It was, however, impossible to study these parameters in vivo due to the lack of imaging tools. Here, we present luminescent biocompatible sensor foils for dual imaging of pHe and oxygenation in vivo. To visualize pHe and oxygen, we used time-domain dual lifetime referencing (tdDLR) and luminescence lifetime imaging (LLI), respectively. With these dual sensors, we discovered centripetally increasing pHe-gradients on human chronic wound surfaces. In a therapeutic approach, we identify pHe-gradients as pivotal governors of cell proliferation and migration, and show that these pHe-gradients disrupt epidermal barrier repair, thus wound closure. Parallel oxygen imaging also revealed marked hypoxia, albeit with no correlating oxygen partial pressure (pO2)-gradient. This highlights the distinct role of pHe-gradients in perturbed healing. We also found that pHe-gradients on chronic wounds of humans are predominantly generated via centrifugally increasing pHe-regulatory Na+/H+-exchanger-1 (NHE1)-expression. We show that the modification of pHe on chronic wound surfaces poses a promising strategy to improve healing. The study has broad implications for cell science where spatial pHe-variations play key roles, e.g. in tumor growth. Furthermore, the novel dual sensors presented herein can be used to visualize pHe and oxygenation in various biomedical fields.
Recent analyses suggest that the p24 capsid (p24(CA)) domain of the HIV-1 group-specific antigen (Gag) may be divided into two structurally and functionally distinct moieties: (i) an amino-terminal portion, previously shown to bind the cellular chaperone cyclophilin A, and (ii) a carboxy-terminal domain, known to contribute to the interaction of the Gag and Gag-Pol precursors during the early assembly process. In order to gain deeper insight into the role of the amino-terminal domain of the p24(CA) protein during viral replication, eight highly conserved proline residues known to promote turns and to terminate alpha-helices within the p24 tertiary structure were replaced by a leucine residue (P-position-L). Following transfection of the proviral constructs in COS7 cells, the majority of the mutants resembled wild-type viruses with respect to the assembly and release of virions. However, although the released particles contained wild-type levels of genomic viral RNA, the mature products of the Gag and Gag-Pol polyproteins as well as the Env glycoproteins-all of them, except mutant P225L-were either noninfectious or severely affected in their replicative capacity. Entry assays monitoring the process of viral DNA synthesis led to the classification of selected provirus mutants into four different phenotypes: (i) mutant P225L was infectious and allowed complete reverse transcription including formation of 2-LTR circles; (ii) mutants P149L, P170L, and P217L failed to form 2-LTR circles; (iii) mutant P222L displayed a severe defect in binding and incorporating cyclophilin A into virions, was delayed with respect to DNA polymerization, and failed to form a 2-LTR replication intermediate; and (iv) mutant P133L was unable even to synthesize a first-strand cDNA product. All replication-defective mutants were characterized by severe alterations in the stability of virion cores, which were in two cases reflected by visible changes in the core morphology. These results suggest that proline residues in the NH(2)-terminal capsid domain represent critical structure determinants for proper formation of functional virion cores and subsequent stages of early replication.
Surfaces can be coated with photosensitizer molecules, which generate singlet oxygen ((1)O2) when the surface is exposed to light. (1)O2 may diffuse from the coating and has the potential to kill microorganisms present on the surface. In the present study a derivative of the meso-tetraphenylporphyrin (TPP) was immobilized onto polyurethane (PU) after being sprayed and polymerized as a thin layer onto poly-methylmethacrylate (PMMA). PU is gas permeable and thus a sufficient amount of oxygen reaches the photosensitizer in this coating. The surface generation of (1)O2 and its diffusion were investigated by detecting its luminescence at 1270 nm and a tri-iodide assay. Antimicrobial photodynamic surface effects were tested on Staphylococcus aureus. The spectrally resolved detection of (1)O2 luminescence yielded a clear peak at 1275 nm. The time-resolved luminescence showed multi-exponential decay, revealing rise and decay times in the range of 5-2 × 10(2)μs. The photodynamic inactivation of S. aureus was monitored at different photosensitizer concentrations and radiant exposures of light. A photodynamic killing of >99.9% (>3log10-steps) was achieved within an irradiation time of 30 min. The photodynamic killing on the bioactive surface confirmed the antimicrobial effect of (1)O2 that was generated in the PU-coating and reached the bacteria by diffusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.