This study presents the physicochemical and mechanical behavior of incorporating hydroxyapatite (HAp) with polylactic acid (PLA) matrix in 3D printed PLA/HAp composite materials. Effects of powder loading to the composition, crystallinity, morphology, and mechanical properties were observed. HAp was synthesized from locally sourced nanoprecipitated calcium carbonate and served as the filler for the PLA matrix. The 0, 5, 10, and 15 wt. % HAp biocomposite filaments were formed using a twin-screw extruder. The resulting filaments were 3D printed in an Ultimaker S5 machine utilizing a fused deposition modeling technology. Successful incorporation of HAp and PLA was observed using infrared spectroscopy and X-ray diffraction (XRD). The mechanical properties of pure PLA had improved on the incorporation of 15% HAp; from 32.7 to 47.3 MPa in terms of tensile strength; and 2.3 to 3.5 GPa for stiffness. Moreover, the preliminary in vitro bioactivity test of the 3D printed PLA/HAp biocomposite samples in simulated body fluid (SBF) indicated varying weight gains and the presence of apatite species’ XRD peaks. The HAp particles embedded in the PLA matrix acted as nucleation sites for the deposition of salts and apatite species from the SBF solution
In this study, natural fiber‐reinforced polymer nanocomposites were prepared from high‐density polyethylene (HDPE), abaca fiber, and nanoprecipitated calcium carbonate (NPCC) using the hot press technique. The study investigated the influence of untreated and alkali‐treated woven abaca fabric and NPCC hybrid reinforcement on the thermomechanical behavior of the natural fiber composites. The HDPE with different amounts of NPCC was melt‐blended in a twin‐screw extruder followed by hot press to produce sheets. A lamination of composites containing alternating layers of HDPE sheets with different amounts of NPCC and layers of untreated and alkali‐treated woven abaca fabric was produced using a hot press machine. The resulting material was composed of 20% weight ratio of woven abaca fibers. The tensile strength showed that the nanocomposite exhibited a high tensile value of 60.1 MPa with alkali‐treated abaca and 1% NPCC. However, a further increase in the NPCC concentration beyond 1% reduced the mechanical strength of the nanocomposite. The thermal stability of the abaca fiber‐reinforced nanocomposite improved with addition of NPCC. Scanning electron microscopic analysis demonstrated that alkali‐treated abaca and 1% NPCC improved the adhesion and compatibility between the fiber and polymer matrix. The potential applications of this natural fiber‐reinforced composite are for automotive and construction materials.
Three different types of styrene-ethylene-butylene-styrene block copolymer (SEBS) with varying ratios of styrene and rubber were melt-compounded with exfoliated graphite nanoplatelets at different loadings. The morphological, thermal, and mechanical properties of the nanocomposites were studied and compared. Morphological observation under SEM and AFM found that the xGnPs were dispersed at the sub-micron level throughout the SEBS matrix. Good interfacial adhesion between the xGnPs and the matrix was also observed. However, the behavior of dispersion was dependent on the styrene/rubber content. SEBS with higher styrene content showed better dispersion and strong interfacial adhesion between the xGnPs and SEBS matrix. These results contributed to the enhancement of the tensile strength of the nanocomposites. Low styrene content behaved like rubber that resulted in low tensile strength but higher elongation compared to SEBS of different amounts of styrene. The XRD patterns indicated that the melt compounding process did not change the d-spacing of xGnPs in all types of SEBS. From the thermal analysis, there was no change in the glass transition of the polymer and no improvement in the thermal stability of the nanocomposites.
Utilization of natural biopolymers has shown potential in generating innovations for tissue engineering applications. This study aims to fabricate scaffolds from cellulose acetate derived from kapok fiber. Cellulose is extracted from raw kapok fibers by alkali treatment and delignification then synthesized into cellulose acetate. Kapok cellulose acetate (KCA) is dissolved in dimethyl sulfoxide to fabricate the scaffold. Materials were characterized using Attenuated Total Reflectance – Fourier Transform Infrared (ATR-FTIR) spectrometer, X-ray diffractometer (XRD) and Differential Scanning Calorimeter (DSC). FTIR analysis has shown that cellulose was extracted from kapok and cellulose acetate was successfully synthesized. XRD analysis also confirmed the presence of cellulose acetate. Results have also shown that synthesized KCA seems to have higher crystallinity than commercially available cellulose acetate (CCA). The degree of substitution (DS) of KCA was found to be 2.85 which is close to the DS value of tri-substituted cellulose acetate. DSC analysis has shown lower glass transition temperature of 52.15°C but higher degradation temperature of 300.43°C than the CCA. Moreover, the values for the enthalpy of fusion for two endotherms of KCA (44.0556 J/g and 18.6946 J/g) are higher than the values for CCA by 344% and 261%, respectively; thus, indicating the higher degree of crystallinity for synthesized KCA samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.