Membrane microdomains, also named lipid rafts ( 1 ), are enriched in glycosphingolipids (GSLs) and cholesterol ( 2 ), and assembled with membrane-integrated proteins, such as caveolins or fl otillins, with affi nity for particular lipid species ( 3 ). Caveolins are cholesterol-binding proteins ( 4 ) and occur in fl ask-shaped invaginations named caveolae ( 5 ). Flotillin proteins, also called reggie proteins, are found in distinct membrane microdomains ( 6 ). Caveolae are particularly abundant in endothelial cells and are involved in many cellular processes, including cholesterol homeostasis, endocytosis, and transcytosis of macromolecules ( 7-9 ). While numerous proteomic studies have been conducted to identify lipid raft-or caveolae-associated proteins of various cell types, including endothelial cells ( 10-12 ), the GSL composition of lipid rafts or caveolae, particularly of endothelial cells, has attracted less attention, despite their outstanding role in membrane microdomain formation
Haemolytic anaemia is one of the characteristics of life-threatening extraintestinal complications in humans during infection with enterohaemorrhagic Escherichia coli (EHEC). Shiga toxins (Stxs) of EHEC preferentially damage microvascular endothelial cells of the kidney and the brain, whereby occluded small blood vessels may elicit anaemia through mechanical erythrocyte disruption. Here we show for the first time that Stx2a, the major virulence factor of EHEC, is also capable of direct targeting developing human erythrocytes. We employed an ex vivo erythropoiesis model using mobilized CD34(+) haematopoietic stem/progenitor cells from human blood and monitored expression of Stx receptors and Stx2a-mediated cellular injury of developing erythrocytes. CD34(+) haematopoietic stem/progenitor cells were negative for Stx2a receptors and resistant towards the toxin. Expression of Stx2a-binding glycosphingolipids and toxin sensitivity was apparent immediately after initiation of erythropoietic differentiation, peaked for basophilic and polychromatic erythroblast stages and declined during maturation into orthochromatic erythroblasts and reticulocytes, which became highly refractory to Stx2a. The observed Stx-mediated toxicity towards erythroblasts during the course of erythropoiesis might contribute, although speculative at this stage of research, to the anaemia caused by Stx-producing pathogens.
Membrane microdomain association of the glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), the highly and less effective receptors, respectively, for Shiga toxins (Stxs), is assumed as a functional requirement for Stx-mediated cytotoxicity. In a previous study, we demonstrated predominant localization of Stx receptors in cholesterol-enriched membrane microdomains of moderately Stx-sensitive human brain microvascular endothelial cells (HBMECs) by means of detergent-resistant membranes (DRMs). Here we report a different preferential distribution of Stx receptors in non-DRM fractions of human glomerular microvascular endothelial cells (GMVECs), the major targets of Stxs in the human kidney. Full structural characterization of Stx receptors using electrospray ionization (ESI) mass spectrometry revealed Gb3Cer and Gb4Cer lipoforms with ceramide moieties mainly composed of C24:0/C24:1 or C16:0 fatty acid and sphingosine (d18:1) in GMVECs comparable to those previously found in HBMECs. Thin-layer chromatography immunostaining demonstrated an approximately 2-fold higher content of Gb3Cer and a 1.4-fold higher content of Gb4Cer in GMVECs than in HBMECs. However, this does not explain the remarkable higher cytotoxic action of Stx1 and Stx2 toward GMVECs as compared with HBMECs. Our finding opens new questions on the microdomain association of Stx receptors and the functional role of GSLs in the membrane assembly of GMVECs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.