Shiga toxin (Stx)-producing Escherichia coli (STEC) from patients with hemolytic-uremic syndrome (HUS), patients with diarrhea without HUS, or asymptomatic subjects were genotyped to assess associations between stx2 variants and clinical manifestations of infection. Neither stx2d nor stx2e was found in 268 STEC isolates from patients with HUS. Of 262 STEC isolates from patients with diarrhea, stx(2d) was found in 41 (15.6%; P<.000001), and stx2e was found in 12 (4.6%; P=.0004). The stx2c genotype frequency was similar among isolates from patients with HUS (3.7%) and diarrhea (5.0%). The frequencies of stx2c, stx2d, and stx2e among 96 STEC isolates from asymptomatic subjects were comparable to those among isolates from patients with diarrhea. None of the 626 STEC isolates contained stx2f. All stx2d-positive or stx2e-positive STEC isolates were eae negative and originated from subjects older than those with STEC isolates with stx2c. stx2c-positive STEC isolates can cause HUS, but the presence of stx2d or stx2e may predict a milder disease with a minimal risk of HUS.
An ongoing outbreak of exceptionally virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4 centered in Germany, has caused over 830 cases of hemolytic uremic syndrome (HUS) and 46 deaths since May 2011. Serotype O104:H4, which has not been detected in animals, has rarely been associated with HUS in the past. To prospectively elucidate the unique characteristics of this strain in the early stages of this outbreak, we applied whole genome sequencing on the Life Technologies Ion Torrent PGM™ sequencer and Optical Mapping to characterize one outbreak isolate (LB226692) and a historic O104:H4 HUS isolate from 2001 (01-09591). Reference guided draft assemblies of both strains were completed with the newly introduced PGM™ within 62 hours. The HUS-associated strains both carried genes typically found in two types of pathogenic E. coli, enteroaggregative E. coli (EAEC) and enterohemorrhagic E. coli (EHEC). Phylogenetic analyses of 1,144 core E. coli genes indicate that the HUS-causing O104:H4 strains and the previously published sequence of the EAEC strain 55989 show a close relationship but are only distantly related to common EHEC serotypes. Though closely related, the outbreak strain differs from the 2001 strain in plasmid content and fimbrial genes. We propose a model in which EAEC 55989 and EHEC O104:H4 strains evolved from a common EHEC O104:H4 progenitor, and suggest that by stepwise gain and loss of chromosomal and plasmid-encoded virulence factors, a highly pathogenic hybrid of EAEC and EHEC emerged as the current outbreak clone. In conclusion, rapid next-generation technologies facilitated prospective whole genome characterization in the early stages of an outbreak.
Multilocus sequence typing of 169 non-O157 enterohemorrhagic
Escherichia coli
(EHEC) isolated from patients with hemolytic uremic syndrome (HUS) demonstrated 29 different sequence types (STs); 78.1% of these strains clustered in 5 STs. From all STs and serotypes identified, we established a reference panel of EHEC associated with HUS (HUSEC collection).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.