The purpose of this study was to investigate the effect of enriched environment on motor function after experimental stroke in mice, and to determine whether time in enriched environment affects functional recovery. Earlier investigations have shown that rats placed in an enriched environment after focal ischemia, remarkably improve motor function, but similar observations in mice have not been reported. In this study, we show that placing mice in an enriched environment for 3 h daily for 2 weeks, after transient (50 mins) occlusion of the middle cerebral artery, enhanced neurologic outcome. Continuous postischemic housing in the enriched environment likewise improved motor function, but mortality increased. Two weeks exposure to enriched environment followed by housing the mice in standard cages for 2 weeks, resulted in a loss of the improved motor function. In contrast, 4 weeks exposure to enriched environment led to an improved motor function and to a better maintenance of neurologic recovery. The expression levels of the immediate-early gene nerve growth factor-induced gene A at 2 to 3 weeks of recovery decreased in animals housed in enriched environment, implying this transcription factor in the recovery process. We conclude that housing mice in an enriched environment after experimental stroke improves functional outcome. Also, the presented experimental procedure is useful for further studies of the genomics of functional recovery after experimental stroke.
Background and Purpose-Cells proliferate continuously in the adult mammalian brain, and in rodents, cell genesis is affected by housing conditions and brain injury. Increase in neurogenesis after brain ischemia has been postulated to be linked to functional recovery after stroke. Housing rodents in an enriched environment improves motor function after stroke injury. We have investigated whether changes in cell genesis can explain the beneficial effects of an enriched environment. Methods-Intact mice and mice subjected to transient occlusion of the middle cerebral artery were exposed to an enriched environment for 1 month. Bromodeoxyuridine was injected daily to label proliferating cells during the first postischemic week. Newborn cells were analyzed immunohistochemically after 4 weeks. Results-The enriched environment increased neurogenesis in the dentate gyrus in both intact and stroke-injured animals. An increased number of newborn cells was found in the subventricular zone of stroke-injured mice, but not in injured mice exposed to an enriched environment. Also, the number of newborn astrocytes (BrdUϩ/S-100ϩ cells), neuroblasts (dcxϩ cells), and reactive astrocytes (vimentin mRNA) in the striatum ipsilateral to the ischemic injury was markedly attenuated and new adult neurons (BrdUϩ/NeuNϩ) were not found. The enriched environment did not affect infarct size or mortality. Conclusions-An enriched environment after experimental stroke increased neurogenesis in the hippocampus, whereas there was a decreased cell genesis and migration of neuroblasts and newborn astrocytes in the striatum.
Brain-derived neurotrophic factor (BDNF) is involved in brain plasticity and neuronal survival. Generally, BDNF enhances synaptic activity and neurite growth, although the effect of BDNF on neuronal survival and brain plasticity following injury is equivocal. Housing rats in an enriched environment after experimental stroke enhances recovery of sensory-motor function, which is associated with a decrease in the BDNF mRNA and protein levels. We used BDNF(+/-) mice and wild-type littermate mice to investigate whether the decrease in the brain levels of BDNF affected motor function or infarct volume following transient occlusion of the middle cerebral artery (tMCAO) for 40 min. We found that the BDNF(+/-) mice had a significantly improved motor function on the rotating pole test 2 weeks after tMCAO compared with wild-type mice. When intermittently exposed to an enriched environment following tMCAO, the wild-type mice improved motor function to the same degree as BDNF(+/-) mice. There was no effect of BDNF reduction on infarct volume. Neurogenesis is induced following experimental stroke, and in the striatum of BDNF(+/-) mice significantly increased numbers of neuroblasts compared with wild-type mice were seen, both in standard and in enriched conditions. We conclude that decreasing brain levels of BDNF enhances the recovery of function following experimental stroke.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.