This paper proposes an analysis of political homophily among Twitter users during the 2016 American Presidential Election. We collected 4.9 million tweets of 18,450 users and their contact network from August 2016 to November 2016. We defined six user classes regarding their sentiment towards Donald Trump and Hillary Clinton: whatever, Trump supporter, Hillary supporter, positive, neutral, and negative. Next, we analyzed their political homophily in three scenarios. Firstly, we analyzed the Twitter follow, mention and retweet connections either unidirectional and reciprocal. In the second scenario, we analyzed multiplex connections, and in the third one, we analyzed friendships with similar speeches. Our results showed that negative users, users supporting Trump, and users supporting Hillary had homophily in all analyzed scenarios. We also found out that the homophily level increase when there are reciprocal connections, similar speeches, or multiplex connections.
In this article, we quantitatively analyze how the term "fake news" is being shaped in news media in recent years. We study the perception and the conceptualization of this term in the traditional media using eight years of data collected from news outlets based in 20 countries. Our results not only corroborate previous indications of a high increase in the usage of the expression "fake news", but also show contextual changes around this expression after the United States presidential election of 2016. Among other results, we found changes in the related vocabulary, in the mentioned entities, in the surrounding topics and in the contextual polarity around the term "fake news", suggesting that this expression underwent a change in perception and conceptualization after 2016. These outcomes expand the understandings on the usage of the term "fake news", helping to comprehend and more accurately characterize this relevant social phenomenon linked to misinformation and manipulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.