Doutor -Empresa de Pesquisa Agropecuária do Rio Grande do Norte. RESUMO:Os resultados dos estudos de delimitação de áreas homogêneas de precipitação têm sido utilizados no planejamento das atividades econômicas, possibilitando o uso mais eficiente e racional dos recursos hídricos e também em regiões com dados de precipitação escassos. O objetivo desta pesquisa é determinar áreas homogêneas em termos do regime de precipitação no estado do Rio Grande do Norte. Foram utilizadas duas técnicas de agrupamento: a hierárquica de Ward e a não hierárquica de k-means. Verificou-se que a precipitação anual média e os índices PCP e PCD foi o conjunto de variáveis mais adequado para determinar os quatro grupos homogêneos. O grupo identificado na região leste do estado é caracterizado como a região de maior precipitação anual, melhor distribuição desta precipitação e concentração de mesma no mês de maio. Se dirigindo para o oeste do estado foi identificada uma região com período de maior precipitação adiantado para o início de maio, menor precipitação anual e uma maior concentração da precipitação. Na região central do estado o grupo identificado é caracterizado por apresentar uma elevada concentração da precipitação e um adiantamento das chuvas para o período do mês de abril, além de ser a região com menor precipitação anual. Na região oeste do estado as chuvas são adiantadas para o final de março, a região apresenta a pior distribuição da precipitação no estado e as precipitações anuais nesta região são mais elevadas do que na região central. Palavras-chave:Análise de agrupamento; Áreas homogêneas; Índices de variabilidade. THE USE OF PCP AND PCD INDICES TO DETERMINING PRECIPITATION HOMOGENEOUS AREAS ABSTRACT:The results of studies of delimitation of homogeneous areas of precipitation have been used in the planning of economic activities, enabling more efficient and rational use of water resources and also in regions with scarce rainfall data. The objective of the research is to determine homogeneous areas in terms of the precipitation regime of Rio Grande do Norte State (Brazil), from the cluster analysis and techniques: hierarchical (Ward) and non-hierarchical (k-means). It was found that the average annual precipitation and PCP and PCD indices were the most appropriate set of variables for determining the four homogeneous groups. The hierarchical and non-hierarchical techniques showed similar results, with only 5 seasons differ. The four homogenous groups identified have the following characteristics. The group identified in the eastern region of the state is characterized as the region of highest annual rainfall, better distribution of this precipitation and concentration of the precipitation in the month of May. In the region more the western state was identified a region that has the rainy season advance to the beginning of May, the lower annual rainfall and a higher concentration of precipitation. The central region of the state is characterized by having a high concentration of precipitation and an advance of rainfall...
This work describes the process of building two indicators in order to measure the efficiency of the Food Acquisition Program -Milk modality (PAA-Milk) in the States which implement it. The Analytic Hierarchy Process (AHP) methodology was used to develop the first indicator, while the Principal Component Analysis was used as a tool for cutting and simplifying the structure of the first indicator to obtain the second indicator. The results demonstrate the great potential of the AHP tool together with the statistical tools to develop indicators to diagnose and monitor public policies in Brazil. The states of Alagoas, Paraíba, and Ceará presented the best efficiency in the performance of the Program, while Bahia and Pernambuco presented the worst results.
A pesquisa estudou a saída de modelos de mudanças climáticas que melhor expressam a atuação dos Vórtices Ciclônicos em Altos Níveis (VCANs) no Nordeste Brasileiro (NEB). Os VCANs foram quantificados pela sua ocorrência diária durante 5 anos (1995-1999), no período de outubro a março. O objeto de estudo foram 13 modelos do CMIP5/IPCC/AR5 (Coupled Model Intercomparison Project Phase 5/Intergovernmental Panel on Climate Change/Fifth Assessment Report), comparados com os resultados do NCEP/NCAR (National Centers for Environmental Prediction/National Center for Atmospheric Research), por meio de métodos estatísticos para escolha do modelo que melhor indica a presença dos VCANs no NEB. A primeira análise comparativa foi feita através das correlações de Pearson, Kendall e Spearman, Raiz quadrada do erro quadrático médio, Raiz quadrada do erro quadrático médio normalizada e os índices de Eficiência e desempenho, Nash-Sutcliffe (NSE), Kling-Gupta (KGE) e o Índice de Concordância de Willmott (d). Em seguida foram selecionados os modelos de melhor desempenho e com significância estatística para uma análise posterior de acertos e erros através dos índices: Índice de Proporção Correta (PC), Índice de Sucesso Crítico (ISC), Probabilidade de Detecção (POD), Taxa de alarme Falso (TAF) e Taxa de Tendência (VIÉS). Para os testes estatísticos aplicados na primeira avaliação realizada o modelo MIROC4h foi o que apresentou os melhores índices seguido pelo MIROC-ESM e inmCM4, respectivamente. Além destes, ainda apresentaram correlação estatística significante o MPI-ESM-LR,o MRI-CGCM3 e o CSIRO-MK3-6-0. A segunda análise também apresentou o MIROC4h com os melhores valores de PC, ISC e POD, excetuando-se o VIÉS que apresentou o segundo melhor resultado e o TAF com o pior resultado em relação aos outros 5 modelos. Dessa forma o MIROC4h apresentou-se como o mais indicado entre os modelos do CMIP5 para estudos de cenários presentes e futuros de VCANs no NEB. A B S T R A C T The research studied the output of climate change models that best express the actions of Upper Tropospheric Cyclonic Vortices (UTCV) in high levels in the Northeast Brazil (NEB). The UTCV were quantified by a daily occurrence for 5 years (1995-1999) in the period from October to March. The object of the study were 13 models from CMIP5/IPCC/AR5 (Coupled Model Intercomparison Project Phase 5 / Intergovernmental Panel on Climate Change / Fifth Assessment Report ), compared with results from the NCEP / NCAR (National Centers for Environmental Prediction / National Center for Atmospheric Research) by means of statistical methods for choosing the model which best indicates the presence of UTCV in the NEB. The first comparative analysis was performed using the Pearson, Spearman and Kendall correlations, mean square error, normalized mean square error and efficiency and performance indices, Nash-Sutcliff (NSE), Kling-Gupta (KGE) and Index of Agreement of the Willmott (d). Then models with better performance and statistical significance for further analysis of successes and mistakes through the indices were selected: Index Proportion Correct (PC), Critical Success Index (CSI), Probability of Detection (POD), False Alarm Rate (FAR) and Trend Rate (BIAS). For the statistical analyzes used in the first test performed MIROC4h model showed the best rates followed by MIROC-ESM and inmCM4 respectively. In addition, further significant statistical correlation MPI-ESM-LR, MRI-CGCM3 and CSIRO-MK3-6-0. The second analysis also showed the MIROC4h with the best values of PC, CSI and POD, except the BIAS that had the second best result and the FAR with the worst result in relation to the other five models considered in this phase. Thus the MIROC4h introduced himself as the most suitable model of the CMIP5 for studies of the present and future scenarios of UTCV in the NEB
This work presents the development of a composite Index of Susceptibility to Drought (ISD) for semiarid Brazilian Northeast that considers climatology, physical properties, soil usage, social and economic aspects, the risk of harvest losses and the shortage of human and animal drinking water. The index started with the Index FUNCEME of drought Severity (IFS), developed by FUNCEME. Then, it evolved to use some tools proposed by the Joint Research Centre/Organization for Economic Co-operation and Development (JRC/OECD), as well as techniques of multiple imputation for missing data and data winsorization. The work was tested and validated with real data from Rio Grande do Norte State in three climatologic scenarios (dry, regular and rainy). A multivariate analysis test and a Monte Carlo simulation were also produced for a sensibility and strength analysis of the developed model. These analyses validated the composition model and the obtained results with real data. The ISD can be used as a tool to support decision makers in various government levels to help guide the actions for the drought-affected areas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.