This work presents a novel scheme to schedule loops for clustered microarchitectures. The scheme is based on a preliminary cluster assignment phase implemented through graph partitioning techniques followed by a scheduling phase that integrates register allocation and spill code generation. The graph partitioning scheme is shown to be very eflective due to its global view of the whole code while the partition is generated. Results show a significant speedup when compared with previously proposed techniques. For some processor configuration the average speedup for the SPECfi95 is 23% with respect to the published scheme with the best pelfonnance. Besides, the proposed scheme is much faster (between 2-7 times, depending on the configuration).
This work presents a modulo scheduling framework for clustered ILP processors that integrates the cluster assignment, instruction scheduling and register allocation steps in a single phase. This unified approach is more effective than traditional approaches based on sequentially performing some (or all) of the three steps, since it allows optimizing the global code generation problem instead of searching for optimal solutions to each individual step. Besides, it avoids the iterative nature of traditional approaches, which require repeated applications of the three steps until a valid solution is found. The proposed framework includes a mechanism to insert spill code on-the-fly and heuristics to evaluate the quality of partial schedules considering simultaneously inter-cluster communications, memory pressure and register pressure. Transformations that allow trading pressure on a type of resource for another resource are also included. We show that the proposed technique outperforms previously proposed techniques. For instance, the average speed-up for the SPECfp95 is 36% for a 4-cluster configuration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.