Hfq functions in post-transcriptional gene regulation in a wide range of bacteria, usually by promoting base-pairing of mRNAs and trans-encoded sRNAs that share partial sequence complementarity. It is less clear if Hfq is required for pairing of cis-encoded RNAs (i.e., antisense RNAs) with their target mRNAs. In the current work, we have characterized the interactions between Escherichia coli Hfq and the components of the Tn10/IS10 antisense system, RNA-IN and RNA-OUT. We show that Hfq interacts with RNA-OUT through its proximal RNA-binding surface, as is typical for Hfq and trans-encoded sRNAs. In contrast, RNA-IN binds both proximal and distal RNA-binding surfaces in Hfq with a higher affinity for the latter, as is typical for mRNA interactions in canonical sRNA-mRNA pairs. Importantly, an amino acid substitution in Hfq that interferes with RNA binding to the proximal site negatively impacts RNA-IN:OUT pairing in vitro and suppresses the ability of Hfq to negatively regulate IS10 transposition in vivo. We also show that Hfq binding to RNA-IN and RNA-OUT alters secondary structure elements in both of these RNAs and speculate that this could be important in how Hfq facilitates RNA-IN:OUT pairing. Based on the results presented here, we suggest that Hfq could be involved in regulating RNA pairing in other antisense systems, including systems encoded by other transposable elements.
Multicopy small RNAs (sRNAs) have gained recognition as an important feature of bacterial gene regulation. In the human pathogen Listeria monocytogenes, 5 homologous sRNAs, called LhrC1-5, control gene expression by base pairing to target mRNAs though 3 conserved UCCC motifs common to all 5 LhrCs. We show here that the sRNAs Rli22 and Rli33-1 are structurally and functionally related to LhrC1-5, expanding the LhrC family to 7 members, which makes it the largest multicopy sRNA family reported so far. Rli22 and Rli33-1 both contain 2 UCCC motifs important for post-transcriptional repression of 3 LhrC target genes. One such target, oppA, encodes a virulence-associated oligo-peptide binding protein. Like LhrC1-5, Rli22 and Rli33-1 employ their UCCC motifs to recognize the Shine-Dalgarno region of oppA mRNA and prevent formation of the ribosomal complex, demonstrating that the 7 sRNAs act in a functionally redundant manner. However, differential expression profiles of the sRNAs under infection-relevant conditions suggest that they might also possess non-overlapping functions. Collectively, this makes the LhrC family a unique case for studying the purpose of sRNA multiplicity in the context of bacterial virulence.
Physiological stress conditions attenuate global mRNA translation via modifications of key eukaryotic initiation factors. However, non-canonical translation initiation mechanisms allow cap-independent translation of certain mRNAs. We have previously demonstrated that eIF5B promotes cap-independent translation of the mRNA encoding the antiapoptotic factor, XIAP, during cellular stress. Here, we show that depletion of eIF5B sensitizes glioblastoma multiforme cells to TRAIL-induced apoptosis by a pathway involving caspases-8, −9, and −7, with no significant effect on cell cycle progression. eIF5B promotes evasion of apoptosis by promoting the translation of several IRES-containing mRNAs, encoding the antiapoptotic proteins XIAP, Bcl-xL, cIAP1, and c-FLIPS. We also show that eIF5B promotes translation of nuclear factor erythroid 2-related factor 2 and suggest that reactive oxygen species contribute to increased apoptosis under conditions of eIF5B depletion. Finally, eIF5B depletion leads to decreased activation of the canonical NF-κB pathway. Taken together, our data suggest that eIF5B represents a regulatory node, allowing cancer cells to evade apoptosis by promoting the translation of pro-survival proteins from IRES-containing mRNAs.
Summary
Synthetic biology requires the design and implementation of novel enzymes, genetic circuits or even entire cells, which can be controlled by the user. RNA‐based regulatory elements have many important functional properties in this regard, such as their modular nature and their ability to respond to specific external stimuli. These properties have led to the widespread exploration of their use as gene regulation devices in synthetic biology. In this review, we focus on two major types of RNA elements: riboswitches and RNA thermometers (RNATs). We describe their general structure and function, before discussing their potential uses in synthetic biology (e.g. in the production of biofuels and biodegradable plastics). We also discuss their limitations, and novel strategies to implement RNA‐based regulatory devices in biotechnological applications. We close with a description of some common model organisms used in synthetic biology, with a focus on the current applications and limitations of RNA‐based regulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.