Bi-directional search is a widely used strategy to increase the success and convergence rates of sampling-based motion planning algorithms. Yet, few results are available that merge both bi-directional search and asymptotic optimality into existing optimal planners, such as PRM*, RRT*, and FMT*. The objective of this paper is to fill this gap. Specifically, this paper presents a bi-directional, sampling-based, asymptotically-optimal algorithm named Bi-directional FMT* (BFMT*) that extends the Fast Marching Tree (FMT*) algorithm to bidirectional search while preserving its key properties, chiefly lazy search and asymptotic optimality through convergence in probability. BFMT* performs a two-source, lazy dynamic programming recursion over a set of randomly-drawn samples, correspondingly generating two search trees: one in cost-to-come space from the initial configuration and another in cost-to-go space from the goal configuration. Numerical experiments illustrate the advantages of BFMT* over its unidirectional counterpart, as well as a number of other state-of-the-art planners.
Assessing reachability for a dynamical system, that is deciding whether a certain state is reachable from a given initial state within a given cost threshold, is a central concept in controls, robotics, and optimization. Direct approaches to assess reachability involve the solution to a two-point boundary value problem (2PBVP) between a pair of states. Alternative, indirect approaches involve the characterization of reachable sets as level sets of the value function of an appropriate optimal control problem. Both methods solve the problem accurately, but are computationally intensive and do no appear amenable to real-time implementation for all but the simplest cases. In this work, we leverage machine learning techniques to devise querybased algorithms for the approximate, yet real-time solution of the reachability problem. Specifically, we show that with a training set of pre-solved 2PBVP problems, one can accurately classify the cost-reachable sets of a differentially-constrained system using either (1) locally-weighted linear regression or (2) support vector machines. This novel, query-based approach is demonstrated on two systems: the Dubins car and a deepspace spacecraft. Classification errors on the order of 10% (and often significantly less) are achieved with average execution times on the order of milliseconds, representing 4 orders-ofmagnitude improvement over exact methods. The proposed algorithms could find application in a variety of time-critical robotic applications, where the driving factor is computation time rather than optimality. the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.