The objective of this paper is to present a full-stack, real-time kinodynamic planning framework and demonstrate it on a quadrotor for collision avoidance. Specifically, the proposed framework utilizes an offlineonline computation paradigm, neighborhood classification through machine learning, sampling-based motion planning with an optimal control distance metric, and trajectory smoothing to achieve real-time planning for aerial vehicles. The approach is demonstrated on a quadrotor navigating obstacles in an indoor space and stands as, arguably, one of the first demonstrations of full-online kinodynamic motion planning; exhibiting execution times under 1/3 of a second. For the quadrotor, a simplified dynamics model is used during the planning phase to accelerate online computation. A trajectory smoothing phase, which leverages the differentially flat nature of quadrotor dynamics, is then implemented to guarantee a dynamically feasible trajectory.
Assessing reachability for a dynamical system, that is deciding whether a certain state is reachable from a given initial state within a given cost threshold, is a central concept in controls, robotics, and optimization. Direct approaches to assess reachability involve the solution to a two-point boundary value problem (2PBVP) between a pair of states. Alternative, indirect approaches involve the characterization of reachable sets as level sets of the value function of an appropriate optimal control problem. Both methods solve the problem accurately, but are computationally intensive and do no appear amenable to real-time implementation for all but the simplest cases. In this work, we leverage machine learning techniques to devise querybased algorithms for the approximate, yet real-time solution of the reachability problem. Specifically, we show that with a training set of pre-solved 2PBVP problems, one can accurately classify the cost-reachable sets of a differentially-constrained system using either (1) locally-weighted linear regression or (2) support vector machines. This novel, query-based approach is demonstrated on two systems: the Dubins car and a deepspace spacecraft. Classification errors on the order of 10% (and often significantly less) are achieved with average execution times on the order of milliseconds, representing 4 orders-ofmagnitude improvement over exact methods. The proposed algorithms could find application in a variety of time-critical robotic applications, where the driving factor is computation time rather than optimality. the
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.