Tomato [Solanum lycopersicum (formerly Lycopersicon esculentum) L. cv. Momotarou] plants were grown hydroponically inside the greenhouse of Hiroshima University, Japan. The adverse effects of potassium (K) deficiency stress on the source-sink relationship during the early reproductive period was examined by withdrawing K from the rooting medium for a period of 21 d. Fruits and stem were the major sink organs for the carbon assimilates from the source. A simple non-destructive micro-morphometric technique was used to measure growth of these organs. The effect of K deficiency was studied on the apparent photosynthesis (source activity), leaf area, partitioning (13)C, sugar concentration, K content, and fruit and stem diameters of the plant. Compared with the control, K deficiency treatment severely decreased biomass of all organs. The treatment also depressed leaf photosynthesis and transport of (13)C assimilates, but the impact of stress on these activities became evident only after fruit and stem diameter expansions were down-regulated. These results suggested that K deficiency diminished sink activity in tomato plants prior to its effect on the source activity because of a direct effect on the water status of the former. The lack of demand in growth led to the accumulation of sugars in leaves and concomitant fall in photosynthetic activity. Since accumulation of K and sugars in the fruit was not affected, low K levels of the growing medium might not have affected the fruit quality. The micro-morphometric technique can be used as a reliable tool for monitoring K deficiency during fruiting of tomato. K deficiency directly hindered assimilate partitioning, and the symptoms were considered more detrimental compared with P deficiency.
Biological nitrogen fixation (BNF), nitrogen (N), and phosphorus (P) imports-exports budgets were estimated at four locations, each with 20 farmer-managed fields for two years in a semi-arid Tanzania and Malawi. The 15 N isotope dilution method was used to quantify BNF by three pigeonpea (Cajanus cajan L. Millspp.) varieties intercropped with maize (Zea mays L.). The N and P accumulation in plant components of sole maize and intercrops of maize-pigeonpea systems were used to estimate the mean exports and imports of N and P. The proportion of N derived from air (%Ndfa) by the pigeonpea varieties ranged from 93.8% to 99.9% in Malawi and 65.6% to 99.3% in Tanzania. The amount of fixed N (BNF; kg N ha À1 yr À1 ) varied from 37.5 to 117.2 in Malawi and 6.3 to 71.5 in Tanzania. The mean values for BNF during the two cropping seasons were 64.3 for Nyambi, 85.3 for Ntonda, 34.1 for Gairo and À54.3 for Babati sites. The mean N budget (kg ha À1 ) was À26.1 in the sole maize plots and À40.3 for the intercrops at the two locations in Malawi, and À50.1 in the sole crop plots and À51.1 in the intercrops at the locations in Tanzania. In a scenario where all the aboveground material except the edible parts was returned to the soil, a positive value of 30.5 kg N for the intercrops was recorded compared with À8.9 kg N for the sole maize in Malawi. For the same scenario in Tanzania, the budget was more negative (À35.4 kg N) for sole maize compared with intercrops (À5.9 kg N). Including the roots in the calculations, did not change the differences between mono and intercrops. The P budget was negative irrespective of whether the aboveground biomass of maize and pigeonpea was incorporated or exported out of the fields, and the values were similar for intercrops and sole maize. The most negative N and P budgets were recorded in the two study areas where the extractable soil P status of the soils and the maize yields were high. These findings indicate that pigeonpea incorporated into maize-based cropping systems will maintain a very high %Ndfa ( > 90%) in all plant parts and thereby contribute to improved N budgets but not increase the proportion of P mined of the soil.
Maize (Zea mays L.) is a major staple food in Sub-Saharan Africa but low soil fertility, limited resources and droughts keep yields low. Cultivation of maize intercropped with pigeonpea (Cajanus cajan L. Millsp.) is common in some areas of eastern and southern Africa. The objectives of this study were (1) to investigate dry matter, nitrogen (N) and phosphorus (P) accumulation in different plant components of maizepigeonpea intercropping systems and (2) to report the effects of the intercrops on soil fertility. Maize-pigeonpea intercrops were compared to sole maize grown using farmers' practices. Intercropping maize and pigeonpea increased (P < 0.05) total system yield compared to sole maize in terms of biomass, N and P accumulation. Pigeonpea planted in maize did not reduce (P < 0.05) the accumulation of dry matter, N nor P in the maize grain. The harvest indices of maize, calculated on basis dry matter, N or P did not differ either (P < 0.05). Total soil C and N contents and inorganic N content, nitrate and ammonium, were not affected by two seasons of maize-pigeonpea intercropping compared to sole maize (P > 0.11). Nitrate and ammonium levels in soil were still not affected by the treatments after the soils were incubated in anaerobic conditions for 8 days at 37°C (P > 0.11). However, pigeonpea added up to 60 kg of N ha )1 to the system and accumulated up to 6 kg of P ha )1 and only 25% of this N and P were exported in the grain. In conclusion, beside the added grain yield of pigeonpea in the intercropped systems, pigeonpea increased the recirculation of dry matter, N and P, which may have a long-term effect on soil fertility. Furthermore, the stems from pigeonpea contributed to household fuel wood consumption. The intercropped system thus had multiple benefits that gave significant increase in combined yield per unit area without additional labour requirements.The main requirement in order to up-scale the maize-pigeonpea intercropping approach is sufficient supply of high-quality pigeonpea seeds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.