Tomato [Solanum lycopersicum (formerly Lycopersicon esculentum) L. cv. Momotarou] plants were grown hydroponically inside the greenhouse of Hiroshima University, Japan. The adverse effects of potassium (K) deficiency stress on the source-sink relationship during the early reproductive period was examined by withdrawing K from the rooting medium for a period of 21 d. Fruits and stem were the major sink organs for the carbon assimilates from the source. A simple non-destructive micro-morphometric technique was used to measure growth of these organs. The effect of K deficiency was studied on the apparent photosynthesis (source activity), leaf area, partitioning (13)C, sugar concentration, K content, and fruit and stem diameters of the plant. Compared with the control, K deficiency treatment severely decreased biomass of all organs. The treatment also depressed leaf photosynthesis and transport of (13)C assimilates, but the impact of stress on these activities became evident only after fruit and stem diameter expansions were down-regulated. These results suggested that K deficiency diminished sink activity in tomato plants prior to its effect on the source activity because of a direct effect on the water status of the former. The lack of demand in growth led to the accumulation of sugars in leaves and concomitant fall in photosynthetic activity. Since accumulation of K and sugars in the fruit was not affected, low K levels of the growing medium might not have affected the fruit quality. The micro-morphometric technique can be used as a reliable tool for monitoring K deficiency during fruiting of tomato. K deficiency directly hindered assimilate partitioning, and the symptoms were considered more detrimental compared with P deficiency.
Phosphorous (P) fertilization is the major mineral nutrient yield determinant among legume crops. However, legume crops vary widely in the ability to take up and use P during deficiency. The aim here was to compare P uptake and translocation, biological nitrogen fixing ability and photosynthetic rate among mashbean (Vigna aconitifolia cv. 'Mash-88'), mungbean (Vigna radiata cv. 'Moong-6601') and soybean (Glycine max L. cv. 'Tamahomare') during deficiency in hydroponics. Two treatments, the withdrawal of P from the solution (Pdeprivation) and continued P at 160 lM (P sufficient) were effected at the pod initiation stage. Plants were grown for 20 days. Short-term labeling with 32 P showed the uptake and distribution of P into plant parts. Withdrawal of P from the solution reduced biomass, photosynthetic activity, and nitrogen fixing ability in mungbean, and mashbean more than in soybean. P deprivation decreased P accumulation more than N accumulation. The decrease was more severe in mungbean and mashbean than soybean. More P was translocated and distributed into leaves in soybean than in mungbean and mashbean. Leaf P amount was more correlated to leaf area than to photosynthetic rate per unit leaf area among all three legume species. The results indicate that selection for increased efficiency of P utilization and leaf area may be used to improve leguminous crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.