Ill-conditioning of the system matrix is a well-known complication in immersed finite element methods and trimmed isogeometric analysis. Elements with small intersections with the physical domain yield problematic eigenvalues in the system matrix, which generally degrades efficiency and robustness of iterative solvers. In this contribution we investigate the spectral properties of immersed finite element systems treated by Schwarz-type methods, to establish the suitability of these as smoothers in a multigrid method. Based on this investigation we develop a geometric multigrid preconditioner for immersed finite element methods, which provides mesh-independent and cut-element-independent convergence rates. This preconditioning technique is applicable to higher-order discretizations, and enables solving large-scale immersed systems in parallel, at a computational cost that scales linearly with the number of degrees of freedom. The performance of the preconditioner is demonstrated for conventional Lagrange basis functions and for isogeometric discretizations with both uniform B-splines and locally refined approximations based on truncated hierarchical B-splines.
In this paper, we present an isogeometric analysis framework for design space exploration. While the methodology is presented in the setting of structural mechanics, it is applicable to any system of parametric partial differential equations. The design space exploration framework elucidates design parameter sensitivities used to inform initial and early-stage design. Moreover, this framework enables the visualization of a full system response, including the displacement and stress fields throughout the domain, by providing an approximation to the system solution vector. This is accomplished through a collocation-like approach where various geometries throughout the design space under consideration are sampled. The sampling scheme follows a quadrature rule while the physical solutions to these sampled geometries are obtained through an isogeometric method. A surrogate model to the design space solution manifold is constructed through either an interpolating polynomial or pseudospectral expansion. Examples of this framework are presented with applications to the Scordelis-Lo roof, a Flat L-Bracket, and an NREL 5MW wind turbine blade.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.