Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from View the MathML source and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics
Diseases related to poor water and sanitation conditions have over 200 million cases reported annually, causing 5-10 million deaths worldwide. Water quality monitoring has thus become essential to the supply of clean and safe water. Conventional monitoring processes involve manual collection of samples from various points in the distribution network, followed by laboratory testing and analysis. This process has proved to be ineffective since it is laborious, time consuming and lacks real-time results to promote proactive response to water contamination. Wireless sensor networks (WSN) have since been considered a promising alternative to complement conventional monitoring processes. These networks are relatively affordable and allow measurements to be taken remotely, in real-time and with minimal human intervention. This work surveys the application of WSN in environmental monitoring, with particular emphasis on water quality. Various WSN based water quality monitoring methods suggested by other authors are studied and analyzed, taking into account their coverage, energy and security concerns. The work also compares and evaluates sensor node architectures proposed the various authors in terms of monitored parameters, microcontroller/microprocessor units (MCU) and wireless communication standards adopted, localization, data security implementation, power supply architectures, autonomy and potential application scenarios.
Studies conducted on resource management in wireless sensor networks have identified energy efficient routing protocols as one of the energy saving mechanisms that can be used to manage the consumption of networks’ available energy and extend network lifetime. Routing protocols assist in finding paths for transmission of sensed events, and they must be able to extend the lifetime of a network despite some of the limitations of sensor nodes in a network and the harsh environments in which the sensor nodes are to operate. In this paper, we survey and compare existing routing protocols in wireless sensor networks. We start by introducing the different solutions that can be used to improve the network lifetime and focus on energy efficient routing protocols as the area of the survey, in addition to network topology modeling. We also model the network regarding energy consumption, sensing and event extraction analysis in the network. Categorization of the routing protocols into homogeneous and heterogeneous was performed, for which, sub-classification into static and mobile and other behavioral patterns of the routing protocols was done. The second phase of the paper presents models and simulations of selected routing protocols and comparisons of their performances. We conclude this paper by discussing future work directions with highlights on some futuristic applications.
The open nature of radio propagation enables ubiquitous wireless communication. This allows for seamless data transmission. However, unauthorized users may pose a threat to the security of the data being transmitted to authorized users. This gives rise to network vulnerabilities such as hacking, eavesdropping, and jamming of the transmitted information. Physical layer security (PLS) has been identified as one of the promising security approaches to safeguard the transmission from eavesdroppers in a wireless network. It is an alternative to the computationally demanding and complex cryptographic algorithms and techniques. PLS has continually received exponential research interest owing to the possibility of exploiting the characteristics of the wireless channel. One of the main characteristics includes the random nature of the transmission channel. The aforesaid nature makes it possible for confidential and authentic signal transmission between the sender and the receiver in the physical layer. We start by introducing the basic theories of PLS, including the wiretap channel, information-theoretic security, and a brief discussion of the cryptography security technique. Furthermore, an overview of multiple-input multiple-output (MIMO) communication is provided. The main focus of our review is based on the existing key-less PLS optimization techniques, their limitations, and challenges. The paper also looks into the promising key research areas in addressing these shortfalls. Lastly, a comprehensive overview of some of the recent PLS research in 5G and 6G technologies of wireless communication networks is provided.
A lot of effort and time is utilized in the planning and building of the cellular wireless networks to use minimum infrastructural components to provide the best network coverage as well as delivery of quality of service. Generally, path loss models are used for the prediction of wireless network coverage. Therefore, detailed knowledge of the appropriate path loss model suitable for the proposed geographical area is needed to determine the coverage quality of any wireless network design. However, to the best of our knowledge, despite the importance of path loss models, as used for the prediction of wireless network coverage, there doesn't exist any comprehensive survey in this field. Therefore, the purpose of this paper is to survey the existing techniques and mechanisms which can be addressed in this domain. Briefly, the contributions of this paper are: (1) providing a comprehensive and up to date survey of the various network coverage prediction techniques, indicating the different frequency ranges the models were developed, (2) the different suitable terrains for each of the model and the best suit mobile generation were presented, and lastly, (3) providing comparative analysis to aid the planning and implementation of the cellular networks. INDEX TERMS Path loss model, prediction, wireless, propagation scenarios, mobile generations, signal. I. INTRODUCTION The remarkable changes experienced by the development of mobile communication system over the last few years has led to severe challenges to the planning of mobile wireless networks. This fruition journey of the first-Generation (1G) network started back in the year 1979 and has progressed to the presently explored Fifth Generation (5G) network. Each new generation is usually built upon the present generation's needs, which led to research and development for a better technology that will accommodate the needs, capacities, proper availability to the end-user. With this exponential increase in the use of mobile-connected devices as well as the constant expansion of mobile communication networks, the effective provision of the coverage of the mobile networks is imperative for the delivery of quality of service (QoS) [1]. Radio propagation can be defined as the behaviour of radio waves experienced while signals are transmitted from one point to another [2]. Such phenomena like absorptions, reflections, scattering, refractions, among others, affect the radio wave [3]. Therefore, mobile network coverage prediction is a vital and essential task in the planning and deployment of cellular technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.