Human immunodeficiency virus type 1 (HIV-1) is phylogenetically classified into groups and clades (or subtypes). Human neutralizing monoclonal antibodies (nMAbs), originally isolated from individuals infected with HIV-1 group M-clade B, neutralized not only primary HIV-1 clade B isolates in vitro but also primary isolates of other group M clades (A, C, D, E, and F). This corrected the previously held notion that primary HIV-1 isolates are resistant to neutralizing antibodies. Here we show that anti-HIV-1 group M-clade B nMAbs potently neutralized primary isolates of the phylogenetically distant HIV-1 group O. We and others have previously shown that passive immunization with human nMAbs protected adult or neonatal primates against infection with simian-human immunodeficiency virus strains encoding HIV-1 group M-clade B envelope genes. The in vitro cross-group neutralization shown here underscores the broad potential of these nMAbs against divergent virus variants and the relevance of their epitopes in the design of acquired immunodeficiency syndrome vaccines.
A potential component that may be useful for passive immunotherapy for HIV-1 is human monoclonal antibodies (HumAbs) possessing potent anti-HIV-1 activity that is directed against conserved regions of the envelope glycoprotein. Such antibodies would, in principle, have the ability to neutralize diverse isolates of HIV-1. To develop such reagents, hybridomas were derived by initial Epstein Barr virus transformation of peripheral blood mononuclear cells (PBMCs) from an asymptomatic HIV-1 seropositive donor followed by fusion with heteromyelomas, and secreted anti-HIV-1 antibodies were further characterized. The specificity of one HumAb, designated as clone 3, was determined by enzyme-linked immunosorbent assay (ELISA) and Western blotting analyses that indicated reactivity to the transmembrane envelope glyco-protein gp41. Synthetic pentadecapeptides overlapping by 10 amino acids were utilized for epitope mapping of clone 3; a decapeptide GCSGKLICTT in the transmembrane gp41 was identified as the epitope. Clone 3 bound to SupT1 cells infected with HTLV-IIIB in fluorescent activated cell sorting analysis. In addition, in vitro biological assays demonstrated that clone 3 possessed neutralization reactivity against diverse laboratory isolates as well as an AZT-resistant isolate. Therefore, clone 3 reactivity defines a conserved neutralizable site on the HIV-1 transmembrane glycoprotein. Clone 3 and the conserved immunogenic epitope on gp41 could be useful in passive and active immunotherapy for the acquired immunodeficiency syndrome (AIDS).
Previously, we generated human monoclonal antibodies using peripheral blood mononuclear cells from an asymptomatic human immunodeficiency virus type 1 (HIV-1)-seropositive donor. One of these monoclonal antibodies (designated clone 3, CL3) recognized 10 amino acids (GCSGKLICTT) within the immunodominant region (cluster I) of the transmembrane envelope glycoprotein gp41 and neutralized infection of target cells with different laboratory isolates. Because the epitope recognized by CL3 has two cysteine residues that could potentially produce a disulfide loop in gp41, we analyzed binding of our monoclonal antibody to the cyclic and linear motif of the peptide sequence IWGCSGKLICTTAVP (residues 600-614). The CL3 antibody did not bind to the synthetic cyclic peptide but did recognize the linear form. Two polyclonal rabbit sera against both the linear and cyclic peptides were then generated. Both antisera bound to viral glycoproteins gp41 and gp160, but neither sera neutralized HIV-1 laboratory isolates. Using a set of alanine-substituted IWGCSGKLICTTAV peptides, we analyzed binding of polyclonal antisera and CL3. The profile of binding of polyclonal antisera to these peptides was different from that of CL3 to the same peptides. This suggests that CL3 recognized a unique neutralizable core epitope, which was not immunogenic in either the cyclic or the linear IWGCSGKLICTTAVP peptides used as immunogens in the rabbits.
Human monoclonal antibodies (HuMAbs) demonstrate great potential for passive immunotherapy against HIV-1. The gp41 transmembrane envelope glycoprotein of HIV has an important role in the pathogenicity of AIDS and importantly displays considerably less hypervariability than the gp120 surface envelope HIV glycoprotein, which makes it particularly a better candidate for the development of passive and active immunotherapies. The general aim of this study was to develop HuMAbs to HIV surface glycoproteins and particularly gp41. Peripheral blood mononuclear cells (PBMCs) were isolated from an HIV-seropositive long-term nondisease progressing patient. B-cells from this individual were then immortalized by Epstein-Barr virus (EBV) transformation, and antibody production was stabilized by fusion of transformed cells with a heteromyeloma. Subsets of the human heterohybridomas so generated were analyzed by ELISA. The hybridoma with the highest binding by immunoassay against gp160 was further analyzed. This hybridoma, designated as clone 37 (C37), was determined to be an IgM Kappa antibody and overlapping peptides of HIV envelope proteins (derived from the MN tissue culture line adapted HIV isolate) were used to map the specific binding domain of this HuMAb. Overlapping peptides designated 2026 (SWSNKSLDDIWNN, AA614-626), and 2027 (DDIWNNMTWMQWEREIDNYT, AA621-640) within the HIV-1 gp41 transmembrane glycoprotein were demonstrated to bind to C37 indicating that the specific binding domain for the antibody was DDIWNN. High affinity binding of C37 by ELISA to recombinant gp41 was demonstrated as well. Few IgM HuMAbs against HIV have been generated and characterized. Theoretically, because of the pentameric binding nature of IgM antibodies as well as their very efficient ability to activate complement, such reagents could have potential as anti-HIV agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.