(SPB) or y.y.kim@leeds.ac.uk (YYK). 2Structural biominerals are inorganic/organic composites that exhibit remarkable mechanical properties. However, the structure-property relationships of even the simplest building unitmineral single crystals containing embedded macromolecules -remain poorly understood. Here, by means of a model biomineral made from calcite single crystals containing glycine (0-7 mol%) or aspartic acid (0-4 mol%), we elucidate the origin of the superior hardness of biogenic calcite.We analyzed lattice distortions in these model crystals by using x-ray diffraction and molecular dynamics simulations, and by means of solid-state nuclear magnetic resonance show that the amino acids are incorporated as individual molecules. We also demonstrate that nanoindentation hardness increased with amino acid content, reaching values equivalent to their biogenic counterparts. A dislocation pinning model reveals that the enhanced hardness is determined by the force required to cut covalent bonds in the molecules.3 Biominerals such as bones, teeth and seashells are characterized by properties optimized for their functions. Despite being formed from brittle minerals and flexible polymers, nature demonstrates that it is possible to generate materials with strengths and toughnesses appropriate for structural applications 1 . At one level, the mechanical properties of these hierarchically structured materials are modelled as classical composites consisting of a mineral phase embedded in an organic matrix 2 . However, the single crystal mineral building blocks of biominerals are also composites 3 , containing both aggregates of biomacromolecules as large as 20 nm 4,5 and inorganic impurities 6,7 . While it should be entirely possible to employ this simple biogenic strategy in materials synthesis 8,9 , the strengthening and toughening mechanisms that result from these inclusions are still poorly understood 10,11 . This work addresses this challenge by analyzing hardening mechanisms in a simple model biomineral system: calcite single crystals containing known amounts of amino acids. We report synthetic calcite crystals with hardnesses equivalent to those of their biogenic counterparts, and offer a detailed explanation for the observed hardening.Since plastic deformation in single crystals occurs by the motion of dislocations, hardness is enhanced by features that inhibit dislocation motion. The mechanisms by which guest species may harden ionic single crystals generally fall into two categories. Second phase particles directly block dislocation motion, requiring a dislocation to either cut through (shear) a particle or bypass it by a diffusive process to keep going 12 . Solutes (point defects) do not directly block dislocation motion, but the stress fields of the dislocations interact with those associated with misfitting solutes, retarding dislocation motion 12 . Biominerals, notably calcite, often deform plastically by twinning 11 , but since twins grow by motion of "twinning dislocations" 13 , these concep...
This article describes an experimentally versatile strategy for producing inorganic/organic nanocomposites, with control over the microstructure at the nano-and mesoscales. Taking inspiration from biominerals, CaCO 3 is coprecipitated with anionic diblock copolymer worms or vesicles to produce single crystals of calcite occluding a high density of the organic component. This approach can also be extended to generate complex structures in which the crystals are internally patterned with nano-objects of differing morphologies. Extensive characterization of the nanocomposite crystals using high resolution synchrotron powder X-ray diffraction and vibrational spectroscopy demonstrates how the occlusions affect the short and long-range order of the crystal lattice. By comparison with nanocomposite crystals containing latex particles and copolymer micelles, it is shown that the effect of these occlusions on the crystal lattice is dominated by the interface between the inorganic crystal and the organic nano-objects, rather than the occlusion size. This is supported by in situ atomic force microscopy studies of worm occlusion in calcite, which reveal fl attening of the copolymer worms on the crystal surface, followed by burial and void formation. Finally, the mechanical properties of the nanocomposite crystals are determined using nanoindentation techniques, which reveal that they have hardnesses approaching those of biogenic calcites.
Structuring ionic solids at the nanoscale with block copolymers (BCPs) is notoriously difficult due to solvent incompatibilities and strong driving forces for crystallization of the inorganic material. Here, we demonstrate that elucidating pathway complexity in the BCP-directed selfassembly of an ionic solid, amorphous calcium phosphate (ACP), is a key component in obtaining nanostructured, bulk composite materials in which the nanostructure is the result of thermodynamically controlled BCP self-assembly, i.e., exhibiting sequences of bulk morphologies as known from typical equilibrium BCP phase diagrams. Specifically, we identify three critical pathway "decision points" for the evaporation-induced self-assembly of composites from ultrasmall, organosilicatemodified amorphous calcium phosphate nanoparticles (osm-ACP-NPs) and poly(isoprene)-block-poly(2-(dimethylamino)ethyl methacrylate) (PI-b-PDMAEMA) block copolymers. Using this strategy enabled us to obtain composites with hexagonal, cubic network, and lamellar BCP morphologies, in addition to mesoporous, cellular materials and macrophase separated materials. The osm-ACP-NPs are synthesized via a two-step sol−gel process in which (3-glycidyloxypropyl)trimethoxysilane (GLYMO) quenches the reaction, limits the particle size, and functionalizes the NP surface. Dynamic light scattering evidences a transition from BCP unimers to micellar aggregates with increasing amounts of sol solution, which is reflected by a corresponding switch from BCP-type morphologies to micellar/cellular morphologies of the nanocomposites. Nanostructured organic−inorganic composites with a continuous osm-ACP-NP matrix phase have indentation moduli (measured by nanoindentation) that are an order of magnitude larger than unstructured composites with similar compositions. Insights provided by this study have relevance to understanding the effects of pathway complexity in the assembly of organic−inorganic composites and may enable access to a broad range of hybrid nanostructures with potential applications in areas including dental repair and hard tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.