The United States Pharmacopeial Convention has led an international collaborative project to develop a toolbox of screening methods and reference standards for the detection of milk powder adulteration. During the development of adulterated milk powder reference standards, blending methods used to combine melamine and milk had unanticipated strong effects on the near-infrared (NIR) spectrum of melamine. The prominent absorbance band at 1468 nm of melamine was retained when it was dry-blended with skim milk powder but disappeared in wet-blended mixtures, where spray-dried milk powder samples were prepared from solution. Analyses using polarized light microscopy, Raman spectroscopy, dielectric relaxation spectroscopy, X-ray diffraction, and mass spectrometry indicated that wet blending promoted reversible and early Maillard reactions with lactose that are responsible for differences in melamine NIR spectra between wet- and dry-blended samples. Targeted detection estimates based solely on dry-blended reference standards are likely to overestimate NIR detection capabilities in wet-blended samples as a result of previously overlooked matrix effects arising from changes in melamine hydrogen-bonding status, covalent complexation with lactose, and the lower but more homogeneous melamine local concentration distribution produced in wet-blended samples. Techniques used to incorporate potential adulterants can determine the suitability of milk reference standards for use with rapid detection methods.
This study was designed to determine the efficacy of extrusion in reducing fumonisin B1 in corn flaking grits in the presence and absence of glucose. In addition, degradation products of fumonisin B1 during extrusion were identified and quantitated with a mass balance approach. Uncontaminated clean corn grits, grits spiked with 30 microg/g fumonisin B1, and grits fermented with Fusarium verticillioides M-2552 (40-50 microg/g fumonisin B1) were extruded in the presence and absence of glucose (10%, w/w) using a single-screw extruder. Extrusion decreased fumonisin B1 by 21-37%, whereas the same process with added glucose further decreased fumonisin B1 by 77-87%. LC-fluorescence and LC-MS showed that most fumonisin in the extruded samples without added glucose was the fumonisin B1 form, whereas the main degradation product in grits extruded with glucose was N-(deoxy- d-fructos-1-yl)fumonisin B1. The formation of hydrolyzed fumonisin B1 was not significant during extrusion. Results suggest that extrusion in the presence of glucose may reduce fumonisin B1 in corn grits significantly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.