Key points Optic nerve axons get less excitable with warming.F‐fibre latency does not shorten at temperatures above 30°C.Action potential amplitude falls when the Na+‐pump is blocked, an effect speeded by warming.Diuretics reduce the rate of action potential fall in the presence of ouabain.Our data are consistent with electroneutral entry of Na+ occurring in axons and contributing to setting the resting potential. AbstractRaising the temperature of optic nerve from room temperature to near physiological has effects on the threshold, refractoriness and superexcitability of the shortest latency (fast, F) nerve fibres, consistent with hyperpolarization. The temperature dependence of peak impulse latency was weakened at temperatures above 30°C suggesting a temperature‐sensitive process that slows impulse propagation. The amplitude of the supramaximal compound action potential gets larger on warming, whereas in the presence of bumetanide and amiloride (blockers of electroneutral Na+ movement), the action potential amplitude consistently falls. This suggests a warming‐induced hyperpolarization that is reduced by blocking electroneutral Na+ movement. In the presence of ouabain, the action potential collapses. This collapse is speeded by warming, and exposure to bumetanide and amiloride slows the temperature‐dependent amplitude decline, consistent with a warming‐induced increase in electroneutral Na+ entry. Blocking electroneutral Na+ movement is predicted to be useful in the treatment of temperature‐dependent symptoms under conditions with reduced safety factor (Uhthoff's phenomenon) and provide a route to neuroprotection.
White-nose syndrome (WNS) is an emerging fungal disease suspected to have infected Indiana caves in the winter of 2010–2011. This disease places energetic strains on cave-hibernating bats by forcing them to wake and use energy reserves. It has caused >5.5 million bat deaths across eastern North America, and may be the driving force for extinction of certain bat species. White-nose syndrome infection can be identified in hibernacula, but it may be difficult to determine whether bats in a particular area are affected if no known hibernacula exist. Thus, our aim was to use long-term monitoring data to examine changes in a summer population away from hibernacula that may be attributable to WNS effects during winter. We used capture data from a long-term bat-monitoring project in central Indiana with data from 10 repeatedly netted sites consistent across all reproductive periods. We modeled capture data by WNS exposure probability to assess changes in relative abundance of common species and reproductive classes as WNS exposure probability increases. We base exposure probability on a cokriging spatial model that interpolated WNS infection from hibernaculum survey data. The little brown bat Myotis lucifugus, the Indiana bat M. sodalis, and the tri-colored bat Perimyotis subflavus suffered 12.5–79.6% declines; whereas, the big brown bat Eptesicus fuscus, the eastern red bat Lasiurus borealis, and the evening bat Nycticeius humeralis showed 11.5–50.5% increases. We caught more nonreproductive adult females and postlactating females when WNS exposure probabilities were high, suggesting that WNS is influencing reproductive success of affected species. We conclude that, in Indiana, WNS is causing species-specific declines and may have caused the local extinction of M. lucifugus. Furthermore, WNS-affected species appear to be losing pups or forgoing pregnancy. Ongoing long-term monitoring studies, especially those focusing on reproductive success, are needed to measure the ultimate impacts of WNS.
The reliance of 10 Utah (USA) aspen forests on direct infiltration of growing season rain versus an additional subsurface water subsidy was determined from a trait‐ and process‐based model of stomatal control. The model simulated the relationship between water supply to the root zone versus canopy transpiration and assimilation over a growing season. Canopy flux thresholds were identified that distinguished nonstressed, stressed, and dying stands. We found growing season rain and local soil moisture were insufficient for the survival of 5 of 10 stands. Six stands required a substantial subsidy (31–80% of potential seasonal transpiration) to avoid water stress and maximize photosynthetic potential. Subsidy dependence increased with stand hydraulic conductance. Four of the six “subsidized” stands were predicted to be stressed during the survey year owing to a subsidy shortfall. Since winter snowpack is closely related to groundwater recharge in the region, we compared winter precipitation with tree‐ring chronologies. Consistent with model predictions, chronologies were more sensitive to snowpack in subsidized stands than in nonsubsidized ones. The results imply that aspen stand health in the region is more coupled to winter snowpack than to growing season water supply. Winters are predicted to have less precipitation as snow, indicating a stressful future for the region's aspen forests.
Estimates of historical disturbance patterns are essential to guide forest management aimed at ensuring the sustainability of ecosystem functions and biodiversity. However, quantitative estimates of various disturbance characteristics required in management applications are rare in longer-term historical studies. Thus, our objectives were to (1) quantify past disturbance severity, patch size, and stand proportion disturbed and (2) test for temporal and subregional differences in these characteristics. We developed a comprehensive dendrochronological method to evaluate an approximately two-century-long disturbance record in the remaining Central and Eastern European primary mountain spruce forests, where wind and bark beetles are the predominant disturbance agents. We used an unprecedented large-scale nested design data set of 541 plots located within 44 stands and 6 subregions. To quantify individual disturbance events, we used tree-ring proxies, which were aggregated at plot and stand levels by smoothing and detecting peaks in their distributions. The spatial aggregation of disturbance events was used to estimate patch sizes. Data exhibited continuous gradients from low-to high-severity and small-to large-size disturbance events. In addition to the importance of small disturbance events, moderate-scale (25-75% of the stand disturbed, >10 ha patch size) and moderate-severity (25-75% of canopy disturbed) events were also common. Moderate disturbances represented more than 50% of the total disturbed area and their rotation periods ranged from one to several hundred years, which is within the lifespan of local tree species. Disturbance severities differed among subregions, whereas the stand proportion disturbed varied significantly over time. This indicates partially independent variations among disturbance characteristics. Our quantitative estimates of disturbance severity, patch size, stand proportion disturbed, and associated rotation periods provide rigorous baseline data for future ecological research, decisions within biodiversity conservation, and silviculture intended to maintain native biodiversity and ecosystem functions. These results highlight a need for sufficiently large and adequately connected networks of strict reserves, more complex silvicultural treatments
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.