A screening method for veterinary drug residues in fish, shrimp, and eel using LC with a high-resolution MS instrument has been developed and validated. The method was optimized for over 70 test compounds representing a variety of veterinary drug classes. Tissues were extracted by vortex mixing with acetonitrile acidified with 2% acetic acid and 0.2% p-toluenesulfonic acid. A centrifuged portion of the extract was passed through a novel solid phase extraction cartridge designed to remove interfering matrix components from tissue extracts. The eluent was then evaporated and reconstituted for analysis. Data were collected with a quadrupole-Orbitrap high-resolution mass spectrometer using both nontargeted and targeted acquisition methods. Residues were detected on the basis of the exact mass of the precursor and a product ion along with isotope pattern and retention time matching. Semiquantitative data analysis compared MS1 signal to a one-point extracted matrix standard at a target testing level. The test compounds were detected and identified in salmon, tilapia, catfish, shrimp, and eel extracts fortified at the target testing levels. Fish dosed with selected analytes and aquaculture samples previously found to contain residues were also analyzed. The screening method can be expanded to monitor for an additional >260 veterinary drugs on the basis of exact mass measurements and retention times.
A quadrupole time-of-flight (Q-TOF) liquid chromatography-mass spectrometry (LC-MS) method was developed to analyze veterinary drug residues in milk. Milk samples were extracted with acetonitrile. A molecular weight cutoff filter was the only cleanup step in the procedure. Initially, a set of target compounds (including representative sulfonamides, tetracyclines, β-lactams, and macrolides) was used for validation. Screening of residues was accomplished by collecting TOF (MS(1)) data and comparing the accurate mass and retention times of found compounds to a database containing information for veterinary drugs. The residues included in the study could be detected in samples fortified at the levels of concern with this procedure 97% of the time. Although the method was intended to be qualitative, an evaluation of the MS data indicated a linear response and acceptable recoveries for a majority of target compounds. In addition, MS/MS data were also generated for the [M + H](+) ions. Product ions for each compound were identified, and their mass accuracy was compared to theoretical values. Finally, incurred milk samples from cows dosed with veterinary drugs, including sulfamethazine, flunixin, cephapirin, or enrofloxacin, were analyzed with Q-TOF LC-MS. In addition to monitoring for the parent residues, several metabolites were detected in these samples by TOF. Proposed identification of these residues could be made by evaluating the MS and MS/MS data. For example, several plausible metabolites of enrofloxacin, some not previously observed in milk, are reported in this study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.