A comprehensive understanding of the neurobiology of alcohol cue reactivity is critical to identifying the neuropathology of alcohol use disorders (AUD) and developing treatments that may attenuate alcohol craving and reduce relapse risk. Functional neuroimaging studies have identified many brain areas in which alcohol cues elicit activation. However, extant studies have included relatively small numbers of cases, with AUD of varying severity, and have employed many different cue paradigms. We used activation likelihood estimation, a quantitative, coordinate-based meta-analytic method, to analyze the brain areas activated by alcohol-related cues across studies, and to examine whether these areas were differentially activated between cases and controls. Secondarily, we reviewed correlations between behavioral measures and cue-elicited activation, as well as treatment effects on such activation. Data analyzed were from 28 studies of 679 cases and 174 controls. Among cases, alcohol cues elicited robust activation of limbic and prefrontal regions, including ventral striatum, anterior cingulate, and ventromedial prefrontal cortex. As compared to controls, cases demonstrated greater activation of parietal and temporal regions, including posterior cingulate, precuneus, and superior temporal gyrus. Cue-elicited activation of ventral striatum was most frequently correlated with behavioral measures and most frequently reduced by treatment, but these results often derived from region-of-interest analyses that interrogated only limbic regions. These findings support long-standing theories of mesolimbic involvement in alcohol cue processing, but suggest that cue-elicited activation of other brain areas may more clearly differentiate cases from controls. Prevention and treatment for AUD should consider interventions that may reduce cue-elicited activation of these areas.
Craving is one of the primary behavioral components of drug addiction, and cue-elicited craving is an especially powerful form of this construct. While cue-elicited craving and its underlying neurobiological mechanisms have been extensively studied with respect to alcohol and other drugs of abuse, the same cannot be said for marijuana. Cue-elicited craving for other drugs of abuse is associated with increased activity in a number of brain areas, particularly the reward pathway. This study used functional magnetic resonance imaging (fMRI) to examine cue-elicited craving for marijuana. Thirty-eight regular marijuana users abstained from use for 72 h and were presented with tactile marijuana-related and neutral cues while undergoing a fMRI scan. Several structures in the reward pathway, including the ventral tegmental area, thalamus, anterior cingulate, insula, and amygdala, demonstrated greater blood oxygen level dependent (BOLD) activation in response to the marijuana cue as compared with the neutral cue. These regions underlie motivated behavior and the attribution of incentive salience. Activation of the orbitofrontal cortex and nucleus accumbens was also positively correlated with problems related to marijuana use, such that greater BOLD activation was associated with greater number of items on a marijuana problem scale. Thus, cue-elicited craving for marijuana activates the reward neurocircuitry associated with the neuropathology of addiction, and the magnitude of activation of these structures is associated with severity of cannabis-related problems. These findings may inform the development of treatment strategies for cannabis dependence.cannabis ͉ cue ͉ fMRI ͉ reward
Given the strong evidence for neurological alterations at the basis of drug dependence, functional magnetic resonance imaging (fMRI) represents an important tool in the clinical neuroscience of addiction. fMRI cue-reactivity paradigms represent an ideal platform to probe the involvement of neurobiological pathways subserving the reward/motivation system in addiction and potentially offer a translational mechanism by which interventions and behavioral predictions can be tested. Thus, this review summarizes the research that has applied fMRI cue-reactivity paradigms to the study of adult substance use disorder treatment responses. Studies utilizing fMRI cue-reactivity paradigms for the prediction of relapse, and as a means to investigate psychosocial and pharmacological treatment effects on cue-elicited brain activation are presented within four primary categories of substances: alcohol, nicotine, cocaine, and opioids. Lastly, suggestions for how to leverage fMRI technology to advance addiction science and treatment development are provided.
Aim To examine whether withdrawal after abstinence and cue-elicited craving were associated with polymorphisms within two genes involved in regulating the endocannabinoid system, cannabinoid receptor 1 (CNR1) and fatty acid amide hydrolase (FAAH). Two single nucleotide polymorphisms (SNPs) in the CNR1 (rs2023239) and FAAH (rs324420) genes, associated previously with substance abuse and functional changes in cannabinoid regulation, were examined in a sample of daily marijuana smokers. Participants Participants were 105 students at the University of Colorado, Boulder between the ages of 18 and 25 years who reported smoking marijuana daily. Measurements Participants were assessed once at baseline and again after 5 days of abstinence, during which they were exposed to a cue-elicited craving paradigm. Outcome measures were withdrawal and craving collected using self-reported questionnaires. In addition, urine samples were collected at baseline and on day 5 for the purposes of 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THC–COOH) metabolite analysis. Findings Between the two sessions, THC–COOH metabolite levels decreased significantly, while measures of withdrawal and craving increased significantly. The CNR1 SNP displayed a significant abstinence × genotype interaction on withdrawal, as well as a main effect on overall levels of craving, while the FAAH SNP displayed a significant abstinence × genotype interaction on craving. Conclusions These genetic findings may have both etiological and treatment implications. However, longitudinal studies will be needed to clarify whether these genetic variations influence the trajectory of marijuana use/dependence. The identification of underlying genetic differences in phenotypes such as craving and withdrawal may aid genetically targeted approaches to the treatment of cannabis dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.